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             Abstract 
Electroencephalography (EEG) is a non-invasive technique that measures brain activity 

through scalp electrodes. Due to its high temporal resolution and ease of use, EEG has 

become a popular tool for brain-computer interface (BCI) applications, which aim to 

translate brain signals into control commands for external devices. A key challenge in EEG-

based BCI is accurate classification of mental tasks from EEG data. This review provides a 

comprehensive overview of recent innovations in EEG-based mental task classification, 

with a focus on deep learning techniques. We discuss various neural network architectures 

that have achieved state-of-the-art performance on mental task classification. These 

include convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 

attention-based models. We also review advanced EEG preprocessing techniques, transfer 

learning methods, and multi-modal integration approaches that further boost classification 

accuracy. In addition, we highlight techniques to improve model interpretability, including 

attention visualizations and layer-wise relevance propagation. Finally, we examine the 

advantages of deep learning for mental task classification in real-world and online BCI 

applications. Overall, deep learning has led to dramatic improvements in EEG decoding, 

allowing for more seamless BCI control. We conclude with an outlook on future challenges 

and opportunities at the intersection of neurotechnology and artificial intelligence. 
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Introduction 
The human brain is one of the most complex systems ever encountered, comprised of 

approximately 100 billion highly interconnected neurons. Understanding and interfacing with 

this formidable computational machine has been a long-standing goal across many fields, with 

applications spanning healthcare, augmented reality, education, entertainment, and beyond [1]. 

A prominent approach is to leverage advanced neurotechnology’s to decode mental states directly 

from neural activity, thereby establishing a brain-computer interface (BCI). BCIs aim to translate 

patterns within brain signals into executable commands to control external devices, from 

prosthetic limbs to computer cursors.  
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A critical challenge across all BCI paradigms is accurately decoding the user's intentions from 

noisy and high-dimensional neuroimaging data. Electroencephalography (EEG) has emerged as 

a preferred method for BCI due to its non-invasive nature, fine temporal resolution, and low cost. 

EEG measures voltage fluctuations on the scalp arising from ionic currents within neuronal 

populations [2]. By presenting stimuli or tasks, systematic modulations of EEG rhythms can be 

elicited which carry information about cognitive processing. However, these neural signatures 

tend to be subtle, variable across sessions and individuals, and contaminated by artifacts. 

Developing algorithms that can reliably extract informative features and patterns from raw EEG 

remains an active research pursuit. 

Recent years have witnessed remarkable advances in EEG decoding driven by artificial 

intelligence. In particular, deep learning techniques like convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs) have become ubiquitous. These data-driven methods 

obviate the need for manually engineering features, instead automatically learning hierarchical 

representations directly from the data itself. Deep learning has led to substantial gains in 

performance across diverse EEG applications - from sleep stage scoring to seizure detection [2]. 

However, what is perhaps most transformative is how it has improved real-time decoding of 

mental tasks, states, and concepts for BCI control.  

In this review, we provide a comprehensive survey of the state-of-the-art in classifying mental 

tasks from EEG using deep learning. We begin with background on typical paradigms for EEG-

based BCI. We then discuss various neural network architectures that have pushed the boundaries 

of mental task classification accuracy [3]. In addition to supervised learning, we also cover semi-

supervised, unsupervised, and transfer learning techniques. Multi-modal methods that combine 

EEG with other data are highlighted as well. Importantly, we put special emphasis on techniques 

that enhance model interpretability, including attention mechanisms and relevance mapping. 

Finally, we examine real-world applications of these algorithms to online BCI systems. 

Figure 1.  

 

Background on EEG-based BCI 
BCI enables direct communication between the brain and external devices like computers or 

prosthetics by translating patterns of neural activity elicited during particular mental tasks into 

control signals. EEG is well suited for BCI applications due to its millisecond temporal precision, 
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fast enough to track the rapid dynamics of cognition. There are several standard paradigms for 

EEG-based BCI: 

Event-related potentials (ERPs) involve subjects actively performing tasks time-locked to 

external stimuli, which elicits stereotypical ERP components such as the P300 wave. For 

example, flashing rows/columns of a letter matrix randomly while the subject focuses on the 

letter they want to communicate elicits a P300 when the desired row/column flashes. This allows 

spellers to select letters from the matrix using only their brain signals. ERPs provide a robust 

form of EEG-based BCI communication used in many real-world applications today. However, 

performance is limited by the slow speed of stimulus presentation necessary to evoke sufficiently 

strong ERPs in the EEG [4]. The P300 speller is the most common ERP-based BCI, but other 

ERP components have also been explored. The N200 response to mismatch negativity can detect 

violations of learned patterns. Error potentials like the ERN and Pe peaks elicited after mistakes 

provide insight into subject performance monitoring. ERPs essentially measure the brain's 

automatic responses to external events, providing an effective communication channel. But the 

need for time-locked stimuli presentation restricts information flow rates considerably. 

Paradigms based on flashing stimuli at 10Hz or lower are common, enabling selection of 1 item 

every few seconds. Faster flashing can increase the rate but reduces ERP amplitudes leading to 

lower accuracy [5]. This makes ERP BCIs relatively slow for communication compared to speech 

or typing. However, for patients with full paralysis, any bandwidth of independent 

communication can be invaluable. Enhancements like adaptive row/column presentation, 

predictive typing, and deep learning decoding can improve ERP speller performance. Gaming 

training also helps users amplify their ERPs. Overall, ERPs supply a unique form of robust 

stimulus-driven communication that is reliable yet slow. Applications span basic word spelling, 

wheelchairs control, and environmental command [6]. However, ERPs are likely not suitable for 

detailed conversation or rapid multi-dimensional control. Thus, BCIs based on oscillatory 

rhythms and motor imagery that do not require external stimulus events may be preferable for 

higher-bandwidth applications once their reliability reaches parity with ERPs. 

Sensorimotor rhythms (SMR) leverage modulation of EEG rhythms around 10Hz (mu) over 

sensorimotor cortex during motor imagery tasks. For instance, imagining moving the left hand 

versus right hand produces distinct patterns of mu rhythm suppression over the corresponding 

areas of motor cortex. Classifiers can be trained to detect these hand-specific signatures in real-

time to allow motor imagery-based control of computer cursors or prosthetics along different 

axes [7]. SMR-based BCI offers faster control than ERPs with more natural motor-related user 

tasks. However, performance accuracy varies across subjects and sessions as the neural patterns 

are not as robust. SMRs originate from thalamocortical loops involved in planning and imagining 

movement. Motor imagery suppresses SMRs by activating premotor areas that ordinarily inhibit 

the rhythms. This enables asynchronous self-paced BCI control using natural imagery without 

dependence on external stimuli. Users can voluntarily modulate SMRs at faster rates than ERPs 

permit, potentially enabling higher-bandwidth BCI operation. Challenges include extensive user 

training required to generate reliable imagery as well as variability both between and within 

subjects [8]. Novice users often have diffuse non-specific SMR modulation. Adaptive classifiers, 

gamified paradigms, and subject-specific frequency targeting help improve control. Multiclass 

decoding expanding the number of control dimensions beyond binary left/right hand has also 

proven viable. SMR BCIs have been demonstrated for 1D and 2D cursor movement, wheelchair 

navigation, and drone control. Though intrinsically faster than ERP BCIs, limitations in accuracy 

and training effort have constrained widespread adoption. Recent advances in deep learning 

decoding of motor imagery, transfer learning, and augmented feedback offer promise for 

enhanced performance. By tapping into the brain's inherent motor planning mechanisms, SMR-

based BCIs could achieve intuitive high-speed communication approaching inner speech rates. 

Realizing this potential while addressing current reliability gaps represents an active research 

frontier [9]. 
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Steady-state visual evoked potentials (SSVEP) utilize the fact that flickering visual stimuli at 

certain frequencies elicit EEG oscillations specifically at that frequency over visual cortex. By 

flickering stimuli at different frequencies simultaneously (e.g. 8Hz left, 13Hz right), the SSVEP 

frequency signature in the EEG provides a robust signal indicating which stimulus the user is 

attend. 

Deep Neural Network Architectures for EEG Decoding 
Feedforward networks: Early applications of neural networks to EEG classification employed 

simple fully-connected feedforward architectures. For example, Schlögl et al.  used a multilayer 

perceptron (MLP) with a single hidden layer to classify motor imagery tasks from EEG. While 

MLPs outperformed existing methods reliant on hand-engineered features, their performance was 

limited due to the low complexity of the model. With greater availability of data and computing 

power, substantially larger and deeper MLPs have become feasible. Lawhern et al.  trained a 

highly optimized four-layer MLP on a public motor imagery dataset , surpassing the previous 

state-of-the-art. More recently, Islam et al.  utilized MLP ensembles with diversity promotion to 

improve robustness [10]. Overall, deep MLPs now rival more complex convolutional and 

recurrent models on some EEG decoding tasks. However, their generalization performance is 

highly dependent on network size and training process. 

Convolutional neural networks: Convolutional neural networks (CNNs) have become 

ubiquitous within EEG analysis, mirroring their dominance in computer vision. The hallmark of 

CNNs is their translation equivariance - local spatial patterns are meaningful regardless of 

location. This makes them well suited for EEG where discriminative signals can occur across the 

scalp [11].  Early EEG studies employed small CNNs with just 1-2 convolutional layers. With 

larger datasets and models, far deeper networks have become standard. Schirrmeister et al.  used 

a compact 8-layer CNN to classify motor imagery, demonstrating advantages over MLPs and 

RNNs. Depth also enables specialization, with different layers learning distinctive features. 

VGG-style architectures with repeating blocks of convolutions have proven effective for 

capturing hierarchical EEG patterns [12]. 

Innovations in CNN architecture design have further advanced EEG decoding. Bashivan et al.  

proposed incorporating residual connections to improve information flow in deep networks. 

Regularizing convolutions using depthwise separable filters also enhances efficiency. 

Architectural variants like DenseNet  and Squeeze-and-Excitation blocks  have shown promise 

as well. Beyond model structure, Jiang et al.  developed a brain-inspired deep CNN using 

Inception modules and neuroscience-based constraints. Together, tailored CNN design 

significantly boosts mental task classification accuracy. 

Recurrent neural networks: While CNNs leverage spatial structure, recurrent neural networks 

(RNNs) model temporal dynamics. This allows RNNs to capture the non-stationary nature of 

EEG signals. Initial applications focused on early RNN variants like long short-term memory 

networks (LSTMs) for epoch-level classification.  Hierarchical RNN architectures have since 

been developed to extract both long- and short-time scale patterns. For motor imagery, Zhang et 

al.  combined a LSTM layer to learn across trials with a convolutional GRU layer to extract intra-

trial features. This dual modeling of local and global temporal context enhances decoding of 

dynamic mental tasks [13]. 

Attention mechanisms are another recent RNN innovation. Lu et al.  added an attention module 

to selectively focus on informative portions of the EEG input. This improved generalization by 

reducing emphasis on less relevant signals. Beyond recurrent models, CNN-RNN hybrids 

integrating convolutional feature extraction with recurrent sequential modeling have also shown 

success. 

Overall, RNNs are unmatched for handling EEG's temporal structure. Stacking RNN layers 

hierarchically or integrating them with CNNs provides complementary multi-scale temporal 

modeling. Attention further improves pertinent feature extraction from dynamic mental tasks. 
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Advanced Training Techniques 
In addition to model architecture, the training process plays a critical role in performance. We 

highlight techniques that help deep networks generalize better from limited labeled EEG data. 

Data augmentation: A common strategy is aggressive offline data augmentation to synthetically 

expand the training set. Simple perturbations like random noise injection  or mixing samples  are 

effective. For Time-series data like EEG, temporal transformations (e.g. cropping, shifting, 

scaling) are also impactful. Generative adversarial networks (GANs) represent a powerful 

augmentation approach, producing realistic synthetic EEG mimicking the original distribution. 

By enhancing diversity, augmentation improves generalization and reduces overfitting [14]. 

Transfer learning: Transfer learning leverages source datasets to initialize models before fine-

tuning on target task data. This is especially useful when target labels are scarce. Schirrmeister 

et al.  first demonstrated the power of transfer learning for EEG, pretraining on a source motor 

task dataset. Others have extended this via multi-task learning, jointly training on source and 

target datasets. Transfer from non-EEG tasks has also been explored. Lawhern et al.  initialized 

models with natural image weights from ImageNet, showing benefits even when source and 

target domains differ significantly. With abundant unlabeled EEG data, pretrained networks can 

serve as generic feature extractors as well. Through prior knowledge transfer, deep models 

require less task-specific training data to achieve strong generalization [15].  

Semi-supervised & self-supervised learning: Fully supervised learning with complete label sets 

for every sample is costly and unrealistic for large EEG collections. Semi-supervised techniques 

that leverage both labeled and unlabeled samples are thus desirable. VAEs trained on unlabeled 

EEG can extract robust feature representations for downstream classification with limited labels. 

Pseudo-labeling can assign tentative labels to unlabeled data for increased supervision. Self-

supervised pretext tasks such as EEG reconstruction from random masking  or contrastive 

predictive coding  also enable unlabeled EEG exploitation. By unlocking the vast majority of 

EEG data lacking manual labels, semi-supervised approaches unlock the full value of large 

datasets. 

Multimodal learning: EEG provides temporally precise but spatially blurry brain activity 

measurements. Combining EEG decoding with other modalities like fMRI, ECoG, eye-tracking, 

or physiology can provide complementary information to improve BCI performance. Fazli et al.  

fused EEG and fMRI to enhance motor imagery classification. Multimodal convolution-

recurrence models jointly process inputs from both modalities. Attention mechanisms can 

dynamically weight modalities. Alternatively, EEG can provide temporal context for 

classification using non-neural inputs. Multimodal integration allows leveraging strengths across 

different brain and behavioral measures for robust BCI [16]. 

Enhancing Model Interpretability: While deep learning achieves state-of-the-art decoding 

performance, drawbacks include lack of interpretability. Understanding what drives predictions 

is critical for neuroscience and for trusting BCI systems. We highlight techniques to enhance 

model interpretability. 

Attention visualization: Attention weights indicate how strongly the model focuses on different 

input elements. For EEG, this reveals brain regions and timepoints deemed important by the 

network. Visualizing learned attention maps provides insight into discriminative neural patterns. 

RNNs and CNNs can be readily adapted to output attention values across EEG electrodes and 

latencies. Attention mechanisms also improve classification performance by focusing 

computation on relevant inputs. 

Layer-wise relevance propagation: Beyond attention, layer-wise relevance propagation (LRP) 

propagates output predictions backwards through the network to produce a relevance map across 

all inputs. Relevance indicates each EEG channel's contribution to the decision. Comparing 

relevance maps between classes highlights distinctive neural substrates. By decomposing 

predictions, LRP allows interpreting model logic and EEG discriminative markers [17]. 

Network simplification: Simpler models are inherently more interpretable than complex black-

box networks. Distillation techniques compress bulky models into shallower networks or 
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decision trees. This retains strong performance while being more transparent. Architectural 

choices like global average pooling also promote interpretability. Understanding is further 

improved by examining network weights and activations. Overall, model simplification, attention 

mechanisms, and propagation methods help reconcile deep learning performance with 

interpretability. 

Applications to Real-World BCI  
While deep learning has driven offline EEG decoding advances, real-world application requires 

effective online implementation. We highlight key algorithmic modifications for real-time BCI 

operation. 

Incremental learning: The limitations of fixed models in capturing the dynamic nature of 

ongoing EEG signals underscore the importance of adopting incremental learning strategies in 

the development of effective BCIs. The essence of incremental learning lies in its ability to adapt 

to the inherent non-stationarities within the neural patterns observed during BCI use. Unlike static 

models, which are rigid and prone to becoming obsolete in the face of evolving brain activity, 

incremental learning ensures that the BCI model remains responsive to the changing nature of 

neural signals in real-time. 

The implementation of incremental learning involves the continuous adjustment of model 

parameters throughout the BCI operation. This dynamic adaptation can be achieved through 

various techniques, such as interleaving new EEG samples into the existing training dataset or 

maintaining a buffer of recent data for periodic mini-batch retraining. These methods enable the 

model to incorporate the latest information, allowing it to stay attuned to shifts in the user's 

cognitive state [18]. The incorporation of regularization techniques is pivotal in preventing 

overfitting to transient fluctuations that might occur during incremental updates. By striking a 

balance between adaptability and stability, regularization ensures that the BCI model maintains 

robust performance, avoiding undue sensitivity to short-term variations. 

The outcome of incremental learning is the development of more personalized BCI models that 

exhibit a heightened capacity to track nuanced changes in the user's brain state over time. This 

personalization is crucial, especially in long-term BCI use, as it allows the system to evolve with 

the user, accommodating individual differences and adapting to shifts in cognitive patterns. As a 

result, the BCI becomes a more reliable and user-centric interface, offering a seamless and 

adaptive interaction between the individual and the technological system. Incremental learning, 

therefore, stands as a cornerstone in overcoming the limitations of fixed models, ushering in a 

new era of personalized and dynamic BCIs that can effectively navigate the complexities of real-

world applications. 

Asynchronous decoding: The conventional paradigm often involves presenting stimuli or cues 

to elicit synchronized task-related EEG activity. While this approach has been fruitful in 

controlled experimental settings, the demand for BCIs in real-world, naturalistic applications 

necessitates a departure from synchronous methodologies. Asynchronous decoding emerges as a 

critical requirement, aiming to enable BCIs to operate seamlessly in environments that mirror the 

complexity of everyday tasks. 

Addressing the challenge of asynchronous decoding involves the incorporation of adaptive 

windowing techniques with flexible slide lengths. This strategy is designed to center prediction 

windows around informative transients within the EEG signals while efficiently disregarding 

uninformative background noise. Adaptive windowing recognizes that the temporal dynamics of 

neural activity are not bound by rigid synchrony, allowing the BCI system to capture relevant 

information irrespective of its temporal position within the EEG data stream. By doing so, the 

BCI becomes more adept at discerning task-related neural patterns in real-world, unscripted 

scenarios [19]. 

Riemannian geometry provides a principled and mathematical foundation for mapping EEG 

snippets into a command space, facilitating continuous control in asynchronous decoding. This 

geometric approach considers the inherent structure of EEG data, acknowledging the complex 

interrelationships between different electrode channels. By leveraging the intrinsic geometry of 
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the data, Riemannian methods offer a robust framework for feature extraction and classification, 

enhancing the accuracy and efficiency of decoding algorithms. However, while promising, the 

practical implementation and optimization of Riemannian geometry-based techniques for real-

time, asynchronous BCI decoding remain areas of active research. 

Despite the strides made in advancing asynchronous decoding, achieving reliable performance 

in real-world scenarios continues to be an open challenge. Variability in individual brain 

responses, environmental factors, and the dynamic nature of naturalistic tasks present ongoing 

hurdles. The quest for robust solutions involves refining existing algorithms, exploring novel 

signal processing techniques, and developing adaptive strategies that can dynamically adjust to 

the unpredictable nature of real-world EEG signals. Researchers and engineers alike are actively 

engaged in addressing these challenges to enhance the practical utility of BCIs in diverse and 

uncontrolled environments. 

System integration: Furthermore, the integration of algorithms into complete BCI systems 

involves navigating intricate challenges associated with various components. Managing 

streaming data flows from EEG hardware is a multifaceted task, demanding robust mechanisms 

to handle the continuous influx of neural signals. The real-time nature of BCI applications 

necessitates not only the processing of vast amounts of data but also the ability to discern relevant 

patterns promptly. This requires advanced data handling and processing techniques to ensure that 

the system operates seamlessly and in real-time. 

Embedded deployment of models represents another formidable challenge. BCI algorithms must 

be implemented on hardware platforms that may have limitations in terms of processing power 

and memory. Achieving efficient model deployment in resource-constrained environments 

requires optimization strategies, such as model quantization and compression, to strike a balance 

between computational efficiency and model accuracy. Additionally, considerations for the 

energy consumption of embedded systems become paramount, particularly in wearable BCI 

applications where power efficiency is critical for user comfort and device longevity. 

Low-latency feedback is a crucial aspect of BCI usability, especially in applications where 

prompt responses are essential, such as neuroprosthetics or real-time control of robotic devices. 

Achieving minimal delay between neural signal acquisition, processing, and feedback generation 

is a complex task that involves optimizing each stage of the BCI pipeline. This necessitates a 

meticulous examination of algorithmic efficiency, hardware capabilities, and communication 

protocols to minimize latency and enhance the user experience. 

The significance of end-to-end co-design cannot be overstated in the development of performant 

real-world BCIs. It goes beyond the mere combination of algorithms with hardware and 

interfaces; it involves a synergistic collaboration between experts from diverse fields. Software 

engineers, hardware developers, and human-computer interaction specialists must work 

cohesively to address the intricacies of BCI system integration. This interdisciplinary 

collaboration is not just about connecting different components but entails a comprehensive 

understanding of the requirements and constraints imposed by each element in the system. 

Discussion & Outlook 
Deep learning has transformed mental task decoding from EEG, achieving substantial gains in 

performance. Architectures like CNNs and RNNs combined with techniques such as transfer 

learning and multimodal integration have proven particularly impactful. This has enabled major 

strides toward naturalistic high-performance BCI. However, room for improvement remains.  

A primary challenge is limited training data. While deep networks excel given large labeled 

datasets, collecting such corpora requires intensive effort. Semi-supervised techniques help 

unlock value from abundant unlabeled EEG, but have not fully bridged the gap. Generative 

modeling is a promising direction, but generating realistic EEG still eludes current GAN 

methods. Adaptive active learning approaches that direct labeling to maximize information gain 

could help address limited supervision. 

EEG's low spatial resolution is another constraint. While progress has occurred through 

multimodal integration, fully non-invasive methods remain desirable. Novel mobile systems 
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acquiring whole-head tEEG could provide extended coverage without cumbersome setups. 

Entirely new non-invasive imaging modalities may further propel BCI capabilities.  

Finally, deep learning techniques must continue advancing from offline decoding toward real-

time applications. Online adaptable systems remain slower and less reliable than offline results 

suggest. Bridging this gap requires co-design of algorithms and complete BCI systems. 

Asynchronous decoding, incremental learning, and system integration that holistically considers 

all components are critical directions.Despite these challenges, the future looks bright for deep 

learning applied to EEG-based BCI [20]. Given the field's rapid progress, highly performant 

systems enabling seamless brain-computer communication seem increasingly feasible. Such 

technologies could profoundly expand human capabilities, serving diverse patient populations 

while also augmenting able-bodied users. The coming years will continue revealing the secrets 

of neural computation while bringing innovative neurotechnologies from laboratory 

demonstrations into practical use. EEG-based BCI powered by deep learning sits at the center of 

this neurorevolution. 

Table 1: Summary of key deep neural network architectures for EEG classification 

Architecture Key Properties Examples 

Multilayer Perceptrons - Fully connected layers - Deep MLPs   
- Model flexibility - MLP ensembles  

Convolutional Networks - Translation invariance - Compact CNNs   
- Hierarchical feature extraction - Deep VGG-style    

- Residual blocks    
- Separable convolutions  

Recurrent Networks - Sequential modeling - LSTMs   
- Hierarchical RNNs - Attention mechanisms  

Hybrid Networks - Complementary capabilities - CNN-RNN   
- Multimodal fusion - Convolutional-recurrence  

 

 

Table 2: Advanced training techniques for deep neural networks applied to EEG 

Technique Principles Benefits 

Data Augmentation - Synthetic sample generation - Reduces overfitting   
- Increases diversity 

Transfer Learning - Leverage source datasets - Enables small target data  
- Initialize weights - Faster convergence 

Semi-Supervision - Leverage unlabeled EEG - Unlocks abundant untagged data  
- Pseudo-labeling - Improves generalization 

Multimodal Learning - Fuse diverse inputs - Provides complementary views  
- Exploit correlations - More robust decoding 

 

 

Table 3: Methods for enhancing model interpretability 

Method Principles Insights Provided 

Attention Visualization - Learn input relevance 

weights 

- Reveals discriminative 

spatial/temporal patterns 

Layer-wise Relevance 

Propagation 

- Backpropagate 

predictions 

- Quantifies input importance 

Network Simplification - Reduce model 

complexity 

- Improves transparency 

 
- Distill into simpler 

form 

 

Analyze Weights & 

Activations 

- Directly inspect 

models 

- Understand learned 

representations 
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Together, these techniques help reconcile deep learning performance with interpretability, 

improving understanding of model decisions and EEG decoding pipelines [21]. 

Conclusion 
We have provided a comprehensive overview of the state-of-the-art in applying deep learning to 

mental task classification using EEG signals. Through a broad survey spanning neural 

architectures, training techniques, multimodal integration, interpretability, and real-world 

implementation, we painted a holistic picture of the transformative impact of deep learning on 

EEG-based BCI research and applications. In just half a decade, deep neural networks have risen 

from promising novel approaches to undisputed dominance within the field [22]. Their ability to 

automatically learn feature representations directly from raw EEG in an end-to-end manner has 

proven vastly superior to prior reliance on manually engineered features and shallow models.  

Perhaps most striking is the sheer diversity of deep learning architectures that display strengths 

on this EEG decoding task. Feedforward networks like multilayer perceptrons, which were once 

considered too simple, can now achieve state-of-the-art accuracy given sufficient depth and 

complexity. Meanwhile, CNNs have established themselves as especially well suited for EEG 

analysis, with their translation equivariance properly capturing the spatial structure of scalp 

recordings [23]. Their hierarchical feature learning maps well to the compositional nature of brain 

signals, decomposing raw EEG into increasingly high-level spatiotemporal patterns. Variants 

like residual networks, separable convolutions, and DenseNets have further enhanced CNN 

performance. 

Recurrent models like LSTMs and GRUs provide complementary abilities to model temporal 

dynamics essential for classification of non-stationary mental tasks. Attention mechanisms make 

RNN encoding even more selective, focusing on salient EEG events. Convolutional-recurrent 

hybrids integrate the two model families to support joint spatiotemporal feature learning [24]. 

Even simple MLPs should not be discounted, as modern ultra-deep implementations prove 

competitive across numerous EEG decoding evaluations. Ultimately, the expansive neural 

architecture design space enables selecting tailored models for each dataset and application [25]. 

Equally important as model choice is properly training these complex models. Large datasets 

with extensive labeled examples are infeasible for most BCI settings. Techniques like aggressive 

data augmentation, transfer learning, semi-supervised methods, and self-supervised pretext tasks 

help deep networks generalize from limited supervised EEG. Multimodal fusion incorporates 

complementary information sources like fMRI, physiology, eye-tracking to improve robustness 

and accuracy. Ongoing research continues advancing these training paradigms to overcome 

challenges posed by limited, noisy, variable EEG [26]. 

Interpretability has emerged as another pivotal area to reconcile the black-box nature of deep 

learning with needs for transparency and neuroscientific insights in BCI applications. Attention 

visualizations reveal which EEG input features networks deem most relevant. Layer-wise 

relevance propagation further quantifies the contribution of each input to predictions. Model 

simplification via distillation helps retain strong decoding performance in more interpretable 

forms. Together, these approaches enable opening up the black-box to better understand model 

logic and gain neuroscientific insights [27]. 

Finally, we surveyed adaptations needed to bring deep learning from powerful offline EEG 

decoding toward real-time responsive BCI. Challenges such as non-stationarity and 

asynchronous control necessitate enhancements like online incremental learning, adaptive 

decoding windows, and dynamic command mapping. System integration expertise spanning 

software, hardware, and HCI is equally critical for usable BCI. While offline accuracy has seen 

dramatic improvements, developing real-time capable systems with deep learning integration 

remains an open challenge. Despite the impressive progress, there is still substantial room for 

advancing deep learning and its integration into EEG-based BCI. Looking forward, a number of 

promising directions emerge that could catalyze further enhancements in decoding performance, 

neuroscientific knowledge, and practical system capabilities. 
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One major impediment continues to be scarcity of abundant, high-quality, labeled training data. 

While deep learning thrives given massive datasets, collecting such EEG corpora requires 

intensive time and effort. Semi-supervised techniques help unlock the value of abundant 

unlabeled recordings, but have not fully bridged this supervision gap [28]. Further developing 

generative modeling and simulation of realistic EEG could provide a valuable new data source 

and augmentation approach. Smart active learning systems that dynamically select samples for 

labeling could reduce manual effort. Reinforcement learning to directly optimize the end-goal 

BCI performance metric instead of intermediate decoding accuracy also holds promise. From a 

neuroscientific perspective, deeper integration of insights and constraints from neurophysiology 

could improve deep learning EEG analysis. Networks informed by neural mechanisms for 

propagation across cortex or hierarchical sensory processing could better match the brain’s own 

computational patterns. Richer encoding of EEG domain knowledge into model structure and 

training may help reconcile data efficiency and accuracy. Testing how well deep models trained 

on EEG mimic or deviate from human and animal neural responses could reveal new discoveries 

about the brain’s encoding. 

Engineering challenges around model deployment must also be confronted to enable real-world 

adoption. Training and evaluating complex deep networks require significant computing 

resources, exacerbated by GPU dependencies. Optimizing architectures and training and 

evaluating complex deep networks requires significant computing resources, exacerbated by 

GPU dependencies. Optimizing architectures and implementing efficient workflows for 

hyperparameter tuning, transfer learning, and other techniques is critical. Quantization, pruning, 

and other compression methods can reduce memory and power needs. Embedded systems 

expertise is needed to co-design streamlined yet accurate networks with low-power wearable 

EEG hardware [29]. Edge computing can distribute model execution across central and local 

devices. Finally, BCI research would benefit from increased openness, transparency, and 

standardization. Adoption of common rigorously curated datasets as benchmarks would reveal 

relative model improvements. Shared repositories for architectures, training code, and pre-trained 

models could accelerate innovation and reproduction. Detailed logging and analysis of 

experimental configurations, computer resources, and results is imperative. There remain gaps 

between reported offline decoding performance and real-time capabilities that greater 

methodological rigor could help identify. Initiatives to provide open source BCI software stacks 

and affordable EEG systems are important for accessibility [30]. 

Deep learning for EEG analysis has rapidly progressed from promising novelty to established 

state-of-the-art technique over just the past several years. Yet this neuroevolutionary remains 

unfinished. Tackling the challenges around data, neuroscience integration, engineering, and open 

science outlined here could unleash the full transformative potential of deep learning for 

decoding mental tasks. Seamless brain-computer communication that augments human 

capabilities, enables neuroscience discovery, and restores function for patients may be closer than 

ever before. But further multidisciplinary collaboration spanning machine learning, 

neuroscience, medicine, and engineering is still needed to fully unravel the secrets of neural 

computation for next-generation brain-computer interfaces. As this emerging field continues 

maturing, deep learning will no doubt remain central to unlocking the rich information encoded 

within EEG signals and moving powerful BCI systems from laboratory to real-world impact. 
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