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ABSTRACT Quantum computing methods take advantage of the principles of superposition and en-
tanglement to facilitate parallel computing that is beyond the reach of classical systems. These advances
have implications for the telecommunications e-commerce industry because the sector demands secure data
transmission, optimal resource allocation, and analysis of huge volumes of data. It reviews three important
applications of quantum computing in this domain: Quantum Key Distribution (QKD), the Quantum
Approximate Optimization Algorithm (QAOA), and quantum machine learning (QML). QKD makes data
more secure by using quantum states that will allow keys to be exchanged securely and make it resistant
to quantum attacks against classical encryption. QAOA is reviewed for their potential to solve network
traffic management and resource allocation to ensure computational time reduction and network efficiency
enhancement. QML is also discussed with its role in processing high-dimensi]onal customer data to optimize
the capability of predictive analytics and customer behavior analysis using quantum-enhanced models. The
other issues tackled in the study involve qubit decoherence, the requirement for quantum error correction,
and integration with quantum-classical systems. We argue here that these challenges need to be solved for
practical deployment of quantum computing in telecom applications. Our findings suggest that meeting
full-scale implementation will require these barriers.

INDEX TERMS clinical decision-making, data integrity, data pipelines, healthcare data management,
HIPAA compliance, IoT data integration, ETL process

I. INTRODUCTION

Quantum computing is based on the principles of superpo-
sition and entanglement; it allows qubits or quantum bits to
handle information quite differently from the way classical
bits operate (Bennett et al., 1997; DiVincenzo, 1995). A qubit
can be mathematically represented as α|0⟩ + β|1⟩, enables
complex information encoding through coefficients α and
β, where |α|2 + |β|2 = 1. Because of the superposition
that allows quantum systems to represent many states at
once, the resultant state space becomes exponentially bigger
in comparison with classical systems. When several qubits
become entangled, their states become interrelated in such
a way that the measurement of one immediately influences
the results of measurements of the others, independently of
how distant they are. This property enables better efficiency

in coordination at different computational processes (Gruska
et al., 1999; Williams, 2010).

Shor’s algorithm is one of the simplest examples of how
quantum mechanics can solve a problem that has been re-
garded as intractable by a classical computer (Bennett et al.,
1997; Kitaev et al., 2002). It factors large integers in polyno-
mial time by making use of the Quantum Fourier Transform,
which is an essential step to uncover periodicity in functions.
The QFT operation can be defined as:
QFT (|x⟩) = 1√

N

∑N−1
k=0 e

2πikx/N |k⟩,
where it transforms the given state to a superposition

encoding the structure of the function under consideration.
That transformation drastically reduces the computational
complexity of integer factorization to one of O((logN)3),
from exponential time taken classically. The reduction of the
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complexity classes has implications for cryptography: the
security of popular encryption schemes like RSA depends on
the hardness of factoring large numbers.

Another recent and significant contribution of quantum
computing is Grover’s algorithm, which performs search on
unstructured databases with a quadratic speedup. Classically,
the process of searching for an element from among N items
takes O(N) queries, while Grover’s algorithm accomplishes
this in O(

√
N) time. This uses the Grover diffusion operator

given as G = 2|ψ⟩⟨ψ| − I , where |ψ⟩ is the superposition of
all possible states and I is the identity matrix; this effectively
amplifies the probability of the correct answer so that it can
appear upon measurement. A mechanism like this, even more
in general, is helpful not only for database searching but also
for optimization problems in general, where such a capability
of the algorithm to efficiently explore possible solutions can
be applied (Knill, 2005; Ladd et al., 2010).

Quantum systems currently work within the NISQ
paradigm, in which the devices are featured by limited co-
herence times and being very susceptible to noise. Quan-
tum coherence is a sensitive issue because interactions with
the environment might cause errors that collapse a qubit
superposition state into a classical one. The decoherence
processes are quantified with parameters such as T1, being
the energy relaxation time, and T2, being the phase coherence
time. These constraints have consequences on the reliability
of quantum computations; hence, methods to mitigate noise
have to be elaborated, such as quantum error correction. QEC
methods have theoretical promise but come at a significant
cost of great resources, constant maintenance, and a tremen-
dous overhead of physical qubits for the stability of even just
one logical qubit.

The hardware for quantum computation is manifold,
each with specific benefits and limitations. Superconducting
qubits use Josephson junctions, which maintain their quan-
tum states at extremely low temperatures, though face chal-
lenges due to coherence times and fabrication. Trapped ion
qubits are ions held together by electromagnetic fields, offer-
ing longer coherence times, while their manipulation—also
by lasers to perform operations—means gate speeds are
much slower. Photonic systems operate on light particles,
hence the speed at which operations can be carried out is
faster, although at the cost of losses in the photons, and
challenges around integration. These hardware platforms
correspond to different approaches in the management of
physical difficulties accompanying the implementation of
quantum computation, with active research ongoing to im-
prove stability and scalability (Preskill, 2018; Weber et al.,
2010).

In general, the implementation of quantum algorithms
contains three steps: data loading, computation, and mea-
surement. The preparation of quantum states at this data
loading phase is a non-trivial challenge, as classical data has
to be encoded into quantum states in such a way that useful
information is preserved. In the computation step, quantum
circuits manipulate these states via a sequence of quantum

gates. In this way, the Hadamard gate is used to prepare
an equal superposition of qubit states, which is generally

represented as H = 1√
2

(
1 1
1 −1

)
. Such transforms provide

quantum systems with the capability to process information
in parallel (McMahon, 2008; Nielsen & Chuang, 2001). Then
by measurement, the quantum state collapses into a specific
classical outcome, thus converting quantum information back
into an exploitable classical form. Since quantum measure-
ment is a probabilistic process, several runs of the algorithm
might be needed to obtain a correct answer.

Quantum computing has cryptanalytic implications be-
cause it allows one to solve many problems efficiently that
are at the heart of classical cryptographic systems. Quantum
algorithms, such as Shor’s algorithm, could factor large in-
tegers in polynomial time, which would grossly compromise
the security of many public-key cryptosystems used today,
such as RSA. Resulting from this is the research into post-
quantum cryptographic methods designed to be resistant to
attacks by quantum computers. One of the promising ap-
proaches to solve this problem is lattice-based cryptography,
because it is believed to resist the powers of quantum com-
putation. On the other hand, quantum key distribution makes
use of principles of quantum mechanics such as the no-
cloning theorem and uncertainty principle to develop secure
communication channels that can detect any eavesdropping
attempt (Steane, 1998; Weber et al., 2010).

II. BACKGROUND
Quantum computing is based on a number of basic principles
that differ from classical computing. First, the most basic unit
of quantum information is called a qubit. It can be thought of
as a vector in a two-dimensional complex vector space. The
two standard basis states |0⟩ and |1⟩ can be written as:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
The general qubit state has the form given as a superpo-

sition of these basis states, and mathematically it may be
written as

|ψ⟩ = α|0⟩+ β|1⟩ = α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
,

where the coefficients α and β are complex numbers
subject to the constraint that |α|2 + |β|2 = 1, ensuring that
the probability of measuring the qubit in either state |0⟩ or |1⟩
sums to 1.

Another fundamental principle governing quantum infor-
mation is entanglement. For a system of two or more qubits,
the state of one depends on that of the other (Knill, 2005;
Nielsen & Chuang, 2010). Perhaps the best-known example
of such a two-qubit entangled state is the so-called Bell state:
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TABLE 1. Key Quantum Computing Algorithms and Their Complexity

Algorithm Classical Complexity Quantum Complexity
Shor’s Algorithm Exponential (e.g., RSA with 2n complexity) Polynomial O((logN)3) for factoring N

Grover’s Algorithm O(N) for unstructured search O(
√
N)

Quantum Fourier Transform (QFT) O(n logn) O(log2 n)
Variational Quantum Eigensolver
(VQE)

Depends on problem size Dependent on quantum circuit depth and number of
shots

TABLE 2. Comparison of Quantum Hardware Platforms

Platform Qubit Technology Challenges
Superconducting Qubits Josephson junction-based circuits Decoherence, limited connectivity, and fabrication

complexity
Trapped Ions Ion traps manipulated by lasers Slow gate speeds, cooling requirements
Photonic Systems Light-based qubits Photon loss, difficult integration with other qubit

types
Topological Qubits Non-Abelian anyons High error resistance but still in early research stages

|ψ⟩ = 1√
2
(|00⟩+ |11⟩) = 1√

2


1
0
0
1

 .

In this form, the combined state cannot be separated into
individual states of each qubit, implying that if you measure
the state of one qubit, you affect the state of the other.

Quantum interference plays a very important role in quan-
tum algorithms, where probability amplitudes of quantum
states interfere to enhance the probability of correct outcomes
while suppressing the probability of incorrect outcomes
(McMahon, 2008; O’brien, 2007). This is achieved by the
application of unitary transformations, which are matrices
acting on quantum states. For example, the Hadamard gate,
which creates equal superpositions, is given by

H =
1√
2

(
1 1
1 −1

)
.

We apply the Hadamard gate to |0⟩:

H|0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
,

which creates a superposition with equal probability am-
plitudes for both |0⟩ and |1⟩.

III. DATA ENCRYPTION THROUGH QUANTUM
TECHNIQUES
Quantum Key Distribution, in short QKD, uses the key
principles of quantum mechanics to enable secure encryption
key exchange via quantum channels in telecommunication
commerce. One of the bases of this area is the protocol
known as the BB84, which encodes binary data into polarized
photons to avail the physical principle that a quantum state is
perturbed by measurement. In this scheme, Alice generates
a string of random bits and assigns each bit to a polarization
basis-again, random-rectilinear or diagonal. Arbitrarily, one
could decide that a 0 is encoded as a horizontally polarized

photon in the case of a rectilinear basis, while 1 is encoded
as a vertically polarized photon. She sends these photons
through a quantum channel to Bob, who, without knowing
Alice’s basis choice, chooses an independent measurement
basis for each incoming photon (Bova et al., 2021).

As Bob measures the received photons, he correctly iden-
tifies the bit value when his basis choice coincides with
Alice’s. Where the bases differ, the measurement results
get randomized, and such bits are subsequently discarded
by Bob. For the sifting process, Alice and Bob classically
discuss on what bases they prepared the states with, not re-
vealing the actual bit values. This would give them a raw key
of those bits where their choice of basis matched. Due to the
fact that any eavesdropper, Eve, would necessarily perturb
the quantum states of the photons, when trying to measure
them, detectable anomalies would have been introduced into
the key (Fisher et al., 2014; Gong et al., 2020).

A central part of QKD in telecommunication is the analysis
of error rates to detect eavesdropping. Alice and Bob use
a subset of their shared bits to estimate the quantum bit
error rate (QBER), defined as the ratio between mismatched
bits and the total tested bits. A high QBER indicates inter-
ference, as the measurements performed by Eve introduce
mismatches between the original bit values held by Alice
and those measured by Bob. This is an important step in
estimation to keep the residuary key intact, guiding further
processes such as error correction and privacy amplification
to determine a secure key for use in cryptographic applica-
tions (Gruska et al., 1999; Hassija et al., 2020).

An effective secure key rate Rsec is obtained by correcting
the raw key rate Rraw due to the occurrence of these errors
and the necessary privacy provided. It is approximated by:

Rsec = Rraw (1− 2H2(Q)) ,

where H2(Q) is the binary entropy function, defined as
H2(Q) = −Q log2(Q)−(1−Q) log2(1−Q), andQ denotes
the QBER. The binary entropy function essentially captures
the uncertainty of the errors. A lower QBER directly implies
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QKD SystemAlice Bob
Quantum Channel Quantum Channel

Secure Key Exchange

Telecom E-Commerce
Platform

Secure Transactions

QKD Key Generation

Secure keys used for encryption

Encryption applied to data transmission

FIGURE 1. Integration of QKD in Telecom E-Commerce: Quantum Key Distribution (QKD) generates secure keys between Alice and Bob over a quantum channel.
These keys are then used to encrypt data for secure transactions in telecom-based e-commerce platforms.

a higher secure key rate since fewer bits have to be discarded
during privacy amplification, allowing more key material to
be retained.

In practical telecom implementations, classical commu-
nication enables error correction, reconciling discrepancies
between Alice’s and Bob’s sequences. This step may use
classical error-correcting codes, such as LDPC codes, which
modify the length of the raw key by discarding bits affected
by errors. Finally, privacy amplification uses hash functions
to compress the reconciled key, eliminating any partial infor-
mation that might have been obtained by a potential eaves-
dropper. This filtered key is then ready for secure data en-
cryption over telecom networks, ensuring that all information
remains concealed, even if part of the initial transmission was
compromised.

The efficiency in telecommunication QKD is based on the
emission rate of the photon source, the transmission charac-
teristics of the quantum channel, and the detection sensitivity
of Bob’s measurement devices. In this regard, "raw key rate"
can be included. Dark counts are spurious clicks not related to
the actual photon transmission at the detector; they contribute
positively to QBER and thus are undesirable. For increasing
Alice-Bob separation, transmission losses in the optical fibre
or free-space link reduce the number of detectable photons,
and hence reduce Rraw. In any practical application of QKD
in commerce, dark count minimization and optimization of
detector efficiency will be required to attain a feasible key
rate (H.-L. Huang et al., 2017; Kirsch & Chow, 2015).

Recent developments of QKD protocols have targeted
enhancing feasibility of secure key-exchange over larger
distances. A general strategy here is the decoy state ap-
proach, itself developed to counter PNS attacks. In a PNS

attack, an eavesdropper makes use of multi-photon signals
in order to obtain information without introducing detectable
anomalies. Decoy state approaches involve having Alice
randomly change the intensity of the photon source such that
an attacker cannot distinguish whether a single-photon or
multi-photon pulse has been sent (Marshall et al., 2016). The
scheme therefore enables better estimation of single-photon
events produced by Alice and Bob, which are essential for
secure key extraction.

There is similarly a need for adaptations toward telecom
applications of QKD, considering the environmental vari-
ables such as phase stability in interferometric protocols and
signal attenuation in fiber optics over long distances. Another
critical area of development is quantum repeaters, enabling
the extension of entanglement distances by creating inter-
mediate nodes preserving quantum information (Mavroeidis
et al., 2018).

Therefore, shifting to postquantum cryptography takes
into consideration the case of telecommunication commerce
with regard to vulnerabilities that quantum computing has
brought upon various classical methods of encryption. Algo-
rithms like Shor’s algorithm have factorized large integers in
O((logN)3) time and have thus threatened the very security
of classic cryptographic protocols such as RSA (Mavroeidis
et al., 2018; Sharma et al., 2021). Therefore, lattice-based
cryptography schemes emerge as a robust alternative wherein
the Learning With Errors problem is at the forefront.

The LWE problem is defined by the challenge of recover-
ing a secret vector s from pairs (A,As + e), where A is a
known matrix and s represents the secret vector and e is some
error vector, drawn from a discrete Gaussian distribution, that
introduces noise so as to eliminate the linear relationship
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Telecom E-Commerce PlatformClient A Client B
Encrypted Data Encrypted Data

QKD System

Secure Keys

Eve

Attempted Interception

E-Commerce Platform

QKD System for Secure Key Exchange

Potential Eavesdropping Detected

FIGURE 2. Data Flow in Secure Telecom E-Commerce: Secure keys from the QKD system are used for encrypting data transmissions between the telecom
e-commerce platform and clients, ensuring confidentiality and security even in the presence of potential eavesdroppers.

Matrix A

Secret Vector s Error Vector e

Product As

LWE Term: As+ e

Multiplies with

Adds Noise

The LWE problem involves recovering the secret vector s from pairs
(A,As + e), where A is known. The error vector e introduces

noise, making decryption difficult for quantum algorithms.

FIGURE 3. LWE Problem: The hardness of computing the secret vector s from the noisy term As + e is the foundational issue enabling the construction of
quantum-resistant cryptographic schemes.
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between A and s. The resilience provided by such a nature
of LWE makes it highly resistant to quantum attacks because
the noise avoids direct decryption via quantum algorithms.

Telecommunication networks, which work on large-scale
infrastructure, are all dependent on secure encryption of data.
Usage of LWE-based encryption gives surety that in the
case of an interception of stre]ams of data, the underlying
information shall be secure. For example, encrypted commu-
nications between telecom servers, such as those that deal
with customer billing or mobile network authentication, rely
on the intractability of the problems based on LWE. Because
of the error term, any attempts to decode these encrypted
transmissions without access to the secret key will remain
computationally infeasible, even for a quantum computer
(Preskill, 2018; Zeuner et al., 2021).

The deployment of lattice-based encryption reaches to
those very scenarios that include secure messaging, en-
crypted voice calls, and protection of financial transactions
over mobile networks. In these scenarios, the LWE problem
provides the basis for key-exchange protocols that make sure
session keys shared between devices remain confidential.
Mathematical hardness of LWE ensures that even with ad-
vances in quantum computing, the keys cannot be derived by
unauthorized parties. This goes hand in hand in maintaining
secure communication links across distributed telecom net-
works.

Ring-LWE is one of the variants of the standard LWE
problem, further extending the applicability toward telecom
by reducing computational complexity through the use of
structured number rings instead of general matrices. Because
of this reduction, it allows faster operations and efficient key
management; therefore, it can also be applied to real-time en-
cryption in high-speed communication systems. Ring-LWE
can securely exchange data across network nodes by ensuring
that encrypted information is totally protected throughout the
transmission path from base stations to end-user devices.

That means the natural resistance of LWE to quantum
decryption agrees with the requirements of 5G and 6G net-
works, where communication over a vast number of intercon-
nected devices is in focus. Thus, LWE-based cryptography
provides such a method for securing communications against
a possible attack by a quantum-enabled eavesdropper while
the scope and complexity of telecommunication networks
continue to expand. The adaptation will ensure that encrypted
channels are robust in everything, from cloud-based telecom
services to secure mobile payments to verification of data
integrity among carriers. Emphasis on lattice-based cryptog-
raphy, such as LWE and its variants, provides the essential
basis upon which secure telecommunication services will
be maintained once quantum computing becomes viable.
It ensures that user data privacy, network communication
integrity, and encrypted information confidentiality remain
intact, irrespective of developments in computational power.

IV. QUANTUM ALGORITHMS FOR SPEED
OPTIMIZATION
In the context of telecom e-commerce, QAOA is an espe-
cially powerful method of combinatorial optimization prob-
lems that involve the optimization of network operations
and resource management. QAOA is a variational algorithm
in which quantum mechanics iteratively refines parameters
toward near-optimal solutions in complex optimization prob-
lems (Bub, 2010). This will be done by implementing a
series of parameterized unitary transformations on an initial
quantum state:

|ψ(γ,β)⟩ = U(B, βp)U(C, γp) · · ·U(B, β1)U(C, γ1)|ψ0⟩.

Here, the unitary transformations U(B, β) = e−iβB and
U(C, γ) = e−iγC define the evolution of the quantum
state. The operators B and C correspond to the problem
constraints and the objective function, respectively. The pa-
rameters γ = (γ1, γ2, . . . , γp) and β = (β1, β2, . . . , βp) are
adjusted iteratively to improve the solution quality.

Most of the typical optimization problems of telecom e-
commerce usually deal with such tasks as routing network
traffic, which is to be efficiently directed through a net-
work in order to minimize latency or congestion. Likewise,
resource allocation problems come up when bandwidth or
server capacity has to be divided among several users or
services in a way that optimizes throughput and cuts costs.
QAOA does indeed provide a scheme where, for example,
telecom operators can translate such problems into a cost
function C, which characterizes efficiency of the network or
sum of resource utilization to be minimized or maximized
(Buchanan & Woodward, 2017; Farhi et al., 1998). In this, the
algorithm attempts to maximize the expectation value of the
cost function within the state prepared by the parameterized
quantum circuit:

⟨ψ(γ,β)|C|ψ(γ,β)⟩.

This expectation value tells us how far the current parame-
ter settings γ and β are from the optimal solution. Iteratively
adjusting the parameters using a classical optimizer yields, in
the limit, a quantum state that corresponds to an approximate
solution of the problem under study. Thus QAOA is a hybrid
quantum-classical algorithm appropriate for today’s genera-
tion of Noisy Intermediate-Scale Quantum devices, based on
shallow quantum circuits with a modest number of qubits.

QAOA can give a competitive advantage in telecom e-
commerce, as poor resource management here directly in-
fluences the user experience and operational costs. In any
case where there is the need for the dynamic allocation of
bandwidth to different regions from a telecom provider, one
that requires matching fluctuating demands, QAOA can find
an optimal way to strategize bandwidth allocation for maxi-
mum network efficiency while minimizing congestion. This
is accomplished by encoding the topology and traffic into the
problem Hamiltonian C and iteratively refining the quantum
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Telecom ServerClient 1 Client 2

LWE-Based Key Exchange

Session Key

Encrypted Data Encrypted Data

The telecom server uses LWE-based cryptography to securely ex-
change keys with clients. These keys enable encryption of sensitive
data such as customer billing and mobile authentication, ensuring

confidentiality even in the presence of quantum-capable adversaries.

FIGURE 4. Lattice-Based Cryptography Applied in Telecom E-Commerce: The key exchange based on LWE will ensure that encrypted data is sent securely
between the telecom servers and clients, hence keeping the communication safe from quantum-based attacks.

Initial State |ψ0⟩

Apply U(C, γ1)

Apply U(B, β1)

Apply U(C, γ2)

Apply U(B, β2)

...

Apply U(C, γp)

Apply U(B, βp)

Final State |ψ(γ,β)⟩

Classical Optimizer
Adjust γ, β

Initialization

Maximize ⟨ψ(γ,β)|C|ψ(γ,β)⟩

FIGURE 5. QAOA Process: The algorithm iteratively applies parameterized unitary transformations U(C, γ) and U(B, β) to go an initial state |ψ0⟩ toward a
near-optimal solution. A classical optimizer adjusts the parameters γ and β based on the expectation value of the cost function.

state to minimize the costs associated with either suboptimal
routing or over-allocated resources (Jozsa & Linden, 2003).

Also, QAOA might be applied against the scheduling
workloads of data centers operating e-commerce transactions
to optimize server workloads and lower power consumption.
QAOA can find configurations that minimize latency for
users accessing online services by modeling the task schedul-
ing problem as a combinatorial optimization problem; this
would help improve the responsiveness and reliability of
e-commerce platforms. This includes the optimization of
parameters with the use of classical algorithms, such as
gradient-based methods or gradient-free optimizers, by iter-
atively updating γ and β until the expectation value of the

solution is maximized.
It is in the application of QAOA to these telecom-specific

problems that one finds the grounds for directly tapping into
computational strengths that quantum algorithms will pro-
vide. In turn, this enables the investigation of exponentially
large solution spaces, inaccessible to classical algorithms
in reasonable time, and may be key to faster convergence
to near-optimal solutions in complex scenarios where tradi-
tional methods may struggle. Hence, QAOA can be applied
for the effective development of operational methods of
telecom e-commerce providers by improving service delivery
and optimizing the use of network resources (Prevedel et al.,
2007).
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Telecom E-Commerce
Network

QAOA System
Network Data

Cost Function C
(e.g., latency, congestion)

Parameter Optimization
γ, β

Optimized Routing and
Resource Allocation

Near-Optimal Solutions

Input Data: Traffic, Resources QAOA Analysis

Classical Optimizer Adjusts Parameters

FIGURE 6. QAOA Application in Telecom E-commerce: QAOA is put into telecom network operations optimisation, like traffic routing or resource allocation, by
formulating these problems into a cost function C. This algorithm iteratively adjusts parameters γ and β to find near-optimal solutions that enhance network
efficiency.

It provides a quadratic speedup in unstructured search
problems and Grover’s search algorithm has pragmatic ap-
plications in telecom e-commerce in all situations involving
large databases and their associated need for rapid access to
data. In searching for an element in a database of size N ,
Grover’s algorithm can find the marked item among those
in O(

√
N) time, a considerable improvement compared with

classical search algorithms, that would require O(N) time to
linearly search through the entire database.

The area where the efficiency of data processing directly
touches the quality of the service by the customer is telecom-
munications in e-commerce. Grover’s algorithm may be put
to work to improve the speed of searches through the large
databases of queries from users. For example, when the
processing of a customer query is involved, or fetching
user account information from a large database, the speedup
afforded by Grover’s algorithm reduces latency and enables
the telecoms provider to give faster responses to user requests
(Gupta & Nene, 2020). This can be particularly useful during
peak loads, wherein effective fetching of data enhances the
experience for the user and ensures that the e-commerce sites
are responsive.

Going beyond mere retrieval, Grover’s algorithm finds
applications in more complex tasks, such as fraud detection.
The usual telecom e-commerce systems usually have to find
out the anomalies in transactions or patterns depicting fraud
transactions amidst the large volume of transactions. In this
manner, by reducing the search problem of specific fraud
patterns, Grover’s algorithm can rapidly sift through the
records in search of entries that may be suspicious. This,
in fact, enables near-real-time fraud detection, since such a
quadratic reduction in search time leads to quicker responses
and mitigations for maintaining the integrity of financial
transactions and customer trust (Stock & James, 2009).

Grover’s algorithm works by iteratively applying a set of
quantum operations, called the Grover iteration, that system-
atically increase the probability amplitude of the target state,
often referred to as the "marked" item, while dampening that

of all the other states. This is done via the iteration expressed
by the Grover diffusion operator:

G = 2|ψ⟩⟨ψ| − I,

where G is applied in succession onto the quantum state
|ψ⟩ that represents the equal superposition of all possible
entries in the database. After roughly

√
N steps the algorithm

shifts the probability distribution so that upon measurement
of the quantum state it will return the marked item with high
probability (Rawat et al., 2022).

That is to say, in certain telecom e-commerce applications,
the search for some specific user records or patterns in
transaction data is bound to be much faster compared to
classical search algorithms. For example, Grover’s algorithm
can speed up the analysis while a telecom provider goes
through call records or purchase histories in order to find out
the pattern of user behavior or to segment customers. This
will be useful for real-time applications, where the ability
for fast access to user information allows for personalization,
better targeting of marketing efforts, or immediate verifica-
tion during customer support calls (Riel, 2021).

Besides, Grover’s algorithm may be applied in enhancing
backend procedures; for example, database maintenance and
optimization, wherein some search for a data structure or
record is to be singled out from a dataset. Grover’s algo-
rithm provides quadratic speed-up in such processes, and this
management of computational resources is much easier and
saves time in data processing. Though this fact contributes to
operational efficiency for the e-commerce platforms, reduc-
ing latency is important in a competitive market environment
wherein user satisfaction directly influences retention and
revenue.

V. AI-DRIVEN CUSTOMER EXPERIENCE USING
QUANTUM MACHINE LEARNING (QML)
Quantum Support Vector Machines embed classical data
into high-dimensional quantum state spaces and incorporate
elements of quantum computing into conventional SVMs.

8 VOLUME 7, 2022



Khurana, R. (2022): Quarterly Journal of Emerging Technologies and Innovations

Initial State |ψ⟩: Superposition
of all entries

Oracle Application
Marks the Target State
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Grover Diffusion Operator
G = 2|ψ⟩⟨ψ| − I
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√
N Times

Measure the State
High Probability of Target

Step 1: Initialization

Step 2: Marking

Step 3: Amplification

Step 4: Iteration

Step 5: Result

FIGURE 7. Grover’s search algorithm starts with an initial superposition state where the oracle applied marks the target state, followed by the Grover diffusion
operator that amplifies the probability of the target. For about

√
N iterations later, the target state can be measured with high probability.

The process begins with the training data in classical form
G that is given as (xi, yi), where xi is the feature vector,
while yi ∈ {−1, 1} are class labels. Quantum feature maps
are used to embed each input vector xi into a quantum state
ϕ(xi), projecting the data into a complex quantum space. The
basic construction of QSVM is based on the quantum kernel
K(x,x′) defined by |⟨ϕ(x)|ϕ(x′)⟩|2. This kernel captures
the similarity between two quantum states, thus making it
possible to realize much finer similarity calculations com-
pared to classical kernels (Abohashima et al., 2020; Chen &
Yoo, 2021).

The most basic advantage of QSVM concerns its capa-
bility to implicitly calculate the similarity measure in high-
dimensional spaces by means of quantum state representa-
tions. In the case of classical SVM, at least for cases where
one has to deal with complicated datasets, computation of
the feature maps has to be performed explicitly. This very
rapidly becomes computationally prohibitive with growing
dimensionality. In contrast, QSVM uses quantum states to
carry out such mappings implicitly, thus enabling the efficient
calculation of inner products between quantum-encoded data
points. This approach is beneficial in datasets containing
large numbers of features, such that the exponential nature of
quantum space can represent intricate structures that would
be challenging for classical methods to process (Schatzki
et al., 2021; Suzuki & Katouda, 2020).

In QSVM, one common method for encoding classical
data into quantum states is called amplitude encoding. It
works by mapping the features of data into the amplitude

probabilities of quantum states. Using this technique, an
exponential number of features can be encoded into a log-
arithmic number of qubits. For instance, n features can be
encoded into log(n) qubits, thereby compressing the feature
space. This encoding is necessary to minimize resources that
need to be spent during quantum processing, since large
amounts of data can be dealt with using this method in the
constraints of present quantum hardware. Representing data
in this form, the quantum kernel K(x,x′) provides the mea-
sure of overlap between the amplitude-encoded states com-
putable through suitably designed quantum circuits (Duan
et al., 2020).

The methods used in the QSVM are hybrid, integrating
quantum and classical methodologies. While the quantum
processor is responsible for the computation of the kernel
function, in general, the parameters of the SVM model are
classically optimized during the training process. The hybrid
approach is usually carried out with the help of a VQA in
which the decision boundary is optimized in an iterative man-
ner from feedback provided by classical optimization loops,
which are guided by quantum-encoded similarities. This
training form essentially provides the advantage of quantum
processing without essentially needing a fully quantum sys-
tem; hence, this is suitable for handling high-dimensional
data streams typical in telecom e-commerce (Duan et al.,
2020; Dunjko & Wittek, 2020).

QSVMs can efficiently classify and analyze high-
dimensional and diverse datasets that contain customer pur-
chase behavior, service usage patterns, and real-time inter-
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Large User Database
(e.g., Customer Records)

Quantum Processor
(Grover’s Algorithm)

Data Input

Search Result: Targeted
Data Entry or Pattern

Rapid Data Retrieval
(e.g., Customer Queries)

Fraud Detection
(e.g., Anomalous

Transactions)

Quantum Search with
√
N Complexity

FIGURE 8. Application of Grover’s Algorithm in Telecom E-Commerce: The quantum processor utilizes Grover’s algorithm to search through large databases,
providing speed-ups in data retrieval tasks such as processing customer queries or detecting fraud. The quadratic reduction in search time enables faster and more
efficient data analysis.

Classical Training Data
(xi, yi)

Quantum Feature Map
xi → ϕ(xi)

Encoding

Quantum State
|ϕ(xi)⟩

Quantum Kernel
K(x,x′) = |⟨ϕ(x)|ϕ(x′)⟩|2

Compute Kernel

Classical Optimization
(e.g., SVM Training)

Optimized Decision Boundary

Step 1: Data Input

Step 2: Quantum Embedding

Step 3: State Representation

Step 4: Kernel Computation

Step 5: Training

Step 6: Classification Result

FIGURE 9. QSVM Process: Classical data is embedded into quantum states using quantum feature maps, allowing for the computation of a quantum kernel. The
kernel is used in a classical optimization loop to train the SVM, yielding a decision boundary based on quantum-encoded similarities.
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action data in telecom e-commerce. In the practical case
of customer churn prediction, QSVMs employ the quantum
kernel to project the pattern of customer behaviors onto
the quantum state space and enable the identification of a
separating hyperplane that distinguishes between churning
and loyal customers. The quantum approach enables the
consideration of a huge number of features together; classical
models will be too slow or cannot track some pattern or
relationship. QSVM enables the refinement of predictive
models for more precise retention strategies and a better
understanding of customer life cycle patterns by leveraging
high-dimensionality quantum space (B. Huang et al., 2020;
Khan & Robles-Kelly, 2020).

Moreover, QSVMs are able to process the complicated
relationships of words in sentiment analysis, much needed
when interpreting customer feedback and engagement data in
telecom e-commerce. Thus, the ability of quantum kernels to
represent text features in high-dimensional space empowers
QSVMs to capture subtle differences in context and sen-
timent, moving beyond superficial meaning representation,
which is inherent in classical methods. In contrast to the
classical models, which often rely on hand-designed feature
maps or pre-trained embeddings, QSVMs would inherently
encode such complex relationships through quantum fea-
ture mappings, hence increasing the accuracy of sentiment
classification (Quiroga et al., 2021). The encoded data shall
construct decision boundaries that realistically reflect the
subtlety of customer feedback and therefore improve insights
from customer interactions.

Various deployments of QSVMs in these domains hint at
the potential of quantum computing for enhancing machine
learning tasks due to basic principles of quantum mechanics.
QSVMs will provide a sound framework for classification
tasks where large and complex data need to be handled by
representation in quantum states and quantum kernel cal-
culation. The transformation of the classical input data into
the quantum state space does not only allow for much more
efficient computation of similarities but also makes visible
certain intricate patterns that could be invisible to classic
SVMs. The QSVM model therefore represents an important
evolution in the use of support vector machines by means of
quantum mechanics for predictive analytics in data-intensive
industries like telecom e-commerce (Sheng & Zhou, 2017;
Zaspel et al., 2018).

VI. DECOHERENCE AND GATE ERRORS
This sensitivity to noise, resulting from decoherence and gate
errors, is among the major challenges quantum systems have
to confront. These make the loss of quantum information
difficult, hence reliable computation as well. Quantum error
correction overcomes this problem by way of use of entan-
gled qubits for error detection and correction without direct
measurement of the quantum state, which keeps the fragile
superpositions intact.

Among the most well-known QEC schemes is the surface
code, in which qubits are placed in a two-dimensional lattice

structure such that neighboring qubits are entangled. Such
structuring of qubits can find single bit-flip and phase-flip er-
rors because of its ability to measure the stabilizer operators-
quantum parity checks finding inconsistencies introduced by
the errors. The logical qudit of the surface code comprises a
large number of physical qubits with the purpose of providing
redundancy for the correction of errors detected in them.

The code distance d defines the error-correcting capability
of a given QEC code:

d = 2t+ 1,

where t would be the maximum number of errors that it is
possible to correct. The larger the code distance, the more
errors the system can tolerate-but the number of physical
qubits needed to encode a single logical qubit grows corre-
spondingly. One can easily show that correcting one error re-
quires a code distance of 3. While increasing d does increase
the coherence time over which the quantum processor can
perform accurate computations, this is clearly at the expense
of greater resource requirements.

This is to say that fault tolerance, when quantum gate error
rates are below a certain threshold that can be managed with
QEC codes, stands out as an important capability for scalable
quantum computing. In telecom e-commerce, this capability
is high because it allows for proper and undisturbed execution
of quantum algorithms underlying tasks, such as secure com-
munication protocols, optimized resource management, and
advanced data analysis. Fault-tolerant quantum processors
are those that ensure these computations are done in an
accurate manner even when physical imperfections abound
in the hardware of quantum systems.

Among various leading candidates that implement fault
tolerance in quantum processors, the surface code stands
tall because of its high error tolerance. However, one of
the major challenges to scaling up quantum systems is the
very resource-intensive nature of QEC, where hundreds to
thousands of physical qubits are used to keep a single logical
qubit. While quantum hardware is bound to evolve, the dire
need is for developing efficient QEC methods; only that way
could quantum computing possibilities be harnessed by the
telecom e-commerce platforms without deterioration due to
the influence of noise and errors.

Quantum computing in telecom applications also brings
challenges in terms of interfacing with classical systems
and managing the data transfer rates between QPUs and
classical processors. Systems take advantage of the strength
of each processor type: QPUs execute tasks best suited for
quantum algorithms, while the classical processor handles
routine computations and control operations. Seamless com-
munication may be at the heart of integration effectiveness.
First, there is a gap in data rate and processing speed from
quantum to classical. Whereas the classical processors could
work with very high rates of data processing, QPUs can only
have much slower cycles of operation, especially considering
the generation of NISQ now, which requires precise manip-
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Data Input
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(Customer Engagement)
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Quantum Processing of Data

FIGURE 10. QSVM Usage in Telecom E-commerce: QSVM finds its application in telecom data classification, which involves high-dimensional data. For example,
telecom patterns related to customer behavior or its feedback. The insights from classification based on quantum help predict churn, perform sentiment analysis,
and develop retention strategies accordingly.

TABLE 3. Comparison of Quantum Error Correction Codes

QEC Code Code Distance (d) Correctable Errors (t) Physical Qubits per Logical Qubit
Surface Code d = 3, 5, 7, . . . t = d−1

2
O(d2)

Steane Code d = 3 t = 1 7
Shor Code d = 3 t = 1 9
Bacon-Shor Code d = 3, 5 t = d−1

2
O(d2)

[[7,1,3]] Code d = 3 t = 1 7

TABLE 4. Resource Requirements for Surface Code Implementation

Code Distance (d) Number of Correctable Errors (t) Approximate Physical Qubits per Logical Qubit
3 1 ∼ 13
5 2 ∼ 25
7 3 ∼ 49
9 4 ∼ 81

11 5 ∼ 121
15 7 ∼ 225
21 10 ∼ 441

TABLE 5. Comparison of Quantum and Classical Processor Characteristics

Characteristic Quantum Processing Unit (QPU) Classical Processor
Data Processing Speed Slower (due to qubit manipulation) Faster (GHz-range clock speeds)
Data Rate Lower (NISQ era constraints) Higher (suitable for high-throughput tasks)
Error Rates Higher (requires Quantum Error Correction) Lower (mature error-handling methods)
Application Focus Optimization, cryptography, quantum simulations Control tasks, real-time processing, routine calculations
Integration Role Provides solutions for complex problems Manages control, interfaces, and overall workflow
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ulations over qubit states with implemented error mitigation.
This mismatch creates the need for interfaces that have to be
designed with care such that data transfer does not become
the bottleneck. An efficient interfacing of quantum-classical
means translation of the quantum results into formats that can
easily be either processed or acted upon by classical systems
quickly and with minimal latency in an end-to-end workflow.

With the same hybrid systems in telecommunication e-
commerce, any number of applications can be included:
quantum algorithms for optimization of network routing,
while a classical system performs real-time monitoring and
adjusts the traffic. In this case, the quantum part will process
some complex problems of optimization and return results
to the classical system for implementation in the network
infrastructure. The integration layers of such an approach
need to efficiently manage the translation of quantum outputs
into actionable data, so that the results can be used in near
real-time applications.

Effective interfacing of QPUs with classical processors
requires strong protocols for data transmission that can bear
the peculiar demands associated with quantum data, such as
coherence in cases where the quantum information needs co-
herence. This may be achieved by employing high-bandwidth
channels of communication or using low-latency protocols
for data transfer so as to avoid latencies or losses that could
render communication between the classical and quantum
parts nullified.

Second, control systems play an important role in man-
aging the hybrid environment, determining when to invoke
quantum computation and how to incorporate the outputs into
broader processes managed by classical systems. Notably,
this coordination is an important part of practical implemen-
tations in telecom networks where decisions based on quan-
tum computations, such as dynamic bandwidth allocation or
secure cryptographic key management, are supposed to be
integrated seamlessly into existing classical workflows.

VII. CONCLUSION
Quantum computing revisits the ways of approaching com-
putationally demanding problems by including unique prop-
erties of qubits and their interaction with quantum mechanics.
Qubits can exist in superposition states; that is, they hold
many values at a time while enabling parallelism in compu-
tation. Entanglement, one of the basic principles that under-
lines this aspect, establishes non-local correlation between
qubits, enabling their states to influence each other over
large distances. These phenomena enable quantum systems
to solve problems containing extensive parallel processing,
hence being effective in tasks that are computationally infea-
sible for classical methods. An example is that, while difficult
for classical algorithms, integer factorization could be ad-
dressed more efficiently with quantum algorithms, achieving
polynomial time complexity where the classical methods
would require exponential time. This, in turn, has a profound
impact on cryptographic systems, as in most encryption
schemes, their security relies precisely on the computational

hardness of tasks like factorization. The advent of quantum
algorithms casts doubt on the resilience of classical cryptog-
raphy against eventual quantum attacks.

Quantum Key Distribution, QKD, represents one such
way to perform secure communication with its security re-
lying on the intrinsic properties of quantum mechanics in
key exchange processes. Contrary to classical cryptographic,
where the tapping may not be detected, QKD relies on a
fundamental quantum mechanical principle: measurement
perturbs a quantum state. For example, in the BB84 proto-
col, Alice sends qubits encoded in random bases to Bob,
who measures them in randomly chosen bases. A process
of comparing subsets of these measurements reveals any
disturbances introduced by an eavesdropper, as interception
would alter the states of the qubits. An error rate measured,
the Quantum Bit Error Rate, or QBER, gives itself a measure
of the presence of probable interception. High QBER would
therefore mean higher chances of eavesdropping, in which
case Alice and Bob would discard the compromised key. This
is the mechanism that ensures QKD provides security against
any kind of potential threat from quantum computers, which
may decrypt classically encrypted data.

Besides cryptography, quantum computing applies in solv-
ing complex optimization problems arising in areas such
as telecommunications. Resource allocation, traffic manage-
ment, and latency minimization are challenges within one
big category that is very often characterized by large and
complex search spaces. For large and complex search spaces,
classical methods of optimization become inefficient. It ap-
plies to this through the use of quantum states in the more ef-
ficient investigation of the solution space. QAOA starts with
some initial quantum state and transforms this in a stepwise
manner via unitary transformations, specified via parameters,
which are iteratively updated in a way that converges to
an optimal solution. The cost and mixer Hamiltonians are
applied to influence the evolution of the quantum state during
QAOA. These guide the exploration of the solution space to
refine its search for the best outcome. It is for this reason
that QAOA can come out with a solution in a number of
iterations compared with classical algorithms, thereby saving
computational time for tasks such as routing traffic and
bandwidth management in telecom networks.

Quantum machine learning is another important domain
in which quantum computing opens new perspectives for
enhancing computational models with complex data anal-
ysis. Most of the applications have to operate with high-
dimensional data, such as customer behavior and predic-
tive analytics in telecom e-commerce. Conventional algo-
rithms in machine learning often face computational prob-
lems when dealing with this type of data because the feature
space increases exponentially. Such problems are resolved
by quantum-enhanced models such as QSVM and quantum
neural networks, which map input data to high-dimensional
quantum state spaces for speedier processing and conver-
gence. For instance, the QSVM makes use of a quantum ker-
nel that evaluates inner products between quantum-encoded

VOLUME 7, 2022 13



Khurana, R. (2022): Quarterly Journal of Emerging Technologies and Innovations

TABLE 6. Key Considerations in Quantum-Classical Integration for Telecom Applications

Aspect Challenges Solutions
Data Rate Mismatch Slow quantum cycles vs. fast classical processing High-bandwidth channels, buffering
Latency Delays in translating quantum results Optimized protocols, parallel classical tasks
Quantum Errors Noisy results from inherent error rates QEC codes, error mitigation techniques
Data Transmission Coherence maintenance during transfer Low-latency protocols, error-corrected lines
Control Coordination Synchronization of quantum and classical tasks Adaptive control, dynamic allocation
Real-Time Integration Delays for real-time applications Hybrid algorithms, pre-processing, feedback

loops

data points to enable such separations of complex patterns
that are difficult or practically infeasible for a classical
model to resolve. With QML models promising a more
effective method of calculating decision boundaries in high-
dimensional feature spaces, they could hopefully enhance
classification tasks and predictive analytics in e-commerce
and change how customer interactions should be analyzed
and optimized.

Quantum computing still faces significant challenges in the
road to actual implementation for practical uses, concerned
with hardware stability and integration into classical systems.
Qubit decoherence is among the major issues: because of
interactions with the environment, the quantum state of a
qubit collapses into one of its basis states, and such infor-
mation is lost. Coherence time determines how long a qubit
can really keep its quantum state and depends on external
noise and thermal interactions. Most notably, long coherence
times are a prerequisite for effective quantum computation,
and this usually requires sophisticated techniques such as
cryogenic cooling and magnetic shielding. Quantum error
correction fights the decoherence effects in their effort to
preserve computational integrity, but it is bound to be costly
in hardware complication. The codes correcting errors de-
mand such encoding of a single logical qubit by multiple
physical qubits that creates a huge overhead in a number of
qubits required. This obviously makes the scalability of state-
of-the-art quantum hardware limited, as error thresholds for
fault-tolerant quantum computing require a large number of
physical qubits.

In addition to this, the bottleneck due to quantum-classical
integration exacerbates challenges related to data transfer and
processing bottlenecks. Where classical processors are more
adept at general-purpose computations, the quantum proces-
sors have particular optimizations toward specific problem
types. Hybrid modes of computing, therefore, attempt to
achieve this synergy by offloading certain tasks to quantum
processors and the rest to classical processors. In such hy-
brid models, an efficient interface is required to exchange
data between quantum and classical systems. It becomes
of paramount importance that these interfaces operate with
minimum latency, as much of the benefits accrued through
quantum computation will be nullified if the transfer of
data between these systems introduces too much latency.
The development of lowlatency communication protocols is
being studied; hybrid system architecture is being optimized
in such a way that frameworks will be built to easily integrate

quantum processors into existing computation workflows,
particularly in telecommunication and e-commerce.
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