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ABSTRACT The convergence of computer science with other scientific disciplines has fostered new
approaches and methodologies in both education and research. This paper presents an extensive examination
of the interdisciplinary integration of computer science into various domains, with a particular focus
on natural science education, eye-tracking technology, and federated learning for unsupervised anomaly
detection. We delve into how computer science principles are being infused into natural science curricula
to foster computational thinking and prepare students for the complexities of modern scientific challenges.
Additionally, this work explores cutting-edge research in webcam-based eye-tracking systems, emphasizing
pupil diameter estimation and upscaling techniques that enhance the accuracy and utility of eye-tracking
data in educational and research settings. These advancements provide new avenues for analyzing cognitive
processes and user behaviors, particularly in digital environments such as virtual and augmented reality.
Furthermore, the paper investigates recent breakthroughs in federated learning, a decentralized approach
to machine learning that preserves data privacy, which is critical for detecting anomalies in sensitive
datasets. Through the introduction of the FedAD-Bench benchmark for federated anomaly detection, this
research highlights how federated learning frameworks are being applied to various industries, including
healthcare and cybersecurity, to detect anomalies in distributed data while maintaining confidentiality. This
comprehensive review of interdisciplinary research demonstrates the growing importance of computational
techniques in addressing real-world challenges, underscoring the transformative impact of integrating
computer science into education, research, and industry.

INDEX TERMS anomaly detection, computational thinking, eye-tracking, federated learning, interdisci-
plinary integration, natural science education, pupil diameter estimation

I. INTRODUCTION

The integration of computational methods into fields such as
biology, physics, and chemistry has transformed traditional
scientific inquiry by enabling the analysis of large datasets
and complex systems. Machine learning, simulations, and al-
gorithmic approaches allow scientists to model intricate pro-
cesses that were previously difficult to explore through em-
pirical methods alone. For example, computational biology
now plays a crucial role in genomics, allowing researchers to
analyze vast genetic sequences efficiently, while in physics,
simulations of molecular dynamics provide insights into

atomic-level interactions. This blending of computer science
with natural sciences not only enhances research outcomes
but also fosters innovation in developing new technologies
and methodologies [1]–[3].

In education, interdisciplinary approaches involving com-
putational tools have redefined how scientific concepts are
taught and learned. Students are increasingly exposed to
programming, data analysis, and algorithmic thinking along-
side traditional curricula, preparing them to tackle the mul-
tifaceted problems that characterize modern scientific chal-
lenges. By mastering both domain-specific knowledge and
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computational techniques, they gain the ability to approach
problems from multiple perspectives, promoting deeper un-
derstanding and more robust problem-solving capabilities.
This educational shift equips the next generation of scientists
and professionals to engage in research that spans multiple
disciplines, contributing to advances in fields ranging from
environmental science to personalized medicine [4]. Com-
putational methodologies have become indispensable in ad-
dressing challenges that require the analysis of vast datasets,
the modeling of complex systems, and the prediction of
intricate patterns. Thus, the union of computer science with
scientific disciplines is not simply an enhancement but a
necessity in the evolving educational landscape.

The infusion of computer science into natural science
education is a prime example of this interdisciplinary evo-
lution. Educators are beginning to adopt computer science
concepts, such as data analysis, algorithmic thinking, and
programming, into their teaching methodologies. This ap-
proach provides students with the necessary tools to ap-
ply computational methods to scientific questions, thereby
deepening their understanding and broadening their problem-
solving capabilities [5] [6]. By integrating computer-based
tools, learners are not only able to engage with abstract
scientific concepts through practical simulations but also
to address real-world problems with a more sophisticated
toolkit. For example, students trained in computational mod-
eling can simulate biological systems, understand ecosystem
dynamics, or forecast environmental changes with higher
precision. A recent study highlights the success of incorporat-
ing computer science principles into natural science classes,
illustrating how computational thinking enhances students’
ability to engage with scientific content in a meaningful
way. This is evident in fields like bioinformatics, where
algorithmic thinking and coding enable students to analyze
genomic sequences, leading to deeper biological insights. By
equipping students with these skills, educators are preparing
the next generation of scientists to navigate an increasingly
technology-driven world.

Moreover, computational thinking is not restricted to cod-
ing or data analysis but includes a broader set of skills, such
as abstraction, decomposition, and pattern recognition, which
are fundamental to the scientific process. The implementation
of these concepts in science classrooms has revolutionized
how experiments are designed and analyzed, allowing for
the simulation of phenomena that would otherwise be too
costly or complex to reproduce physically. For instance,
in chemistry education, simulations of molecular dynam-
ics can be conducted using Python or other programming
languages, providing students with hands-on experience in
computational chemistry. This shift is also evident in physics,
where numerical methods are applied to solve differential
equations governing physical systems, further enhancing the
teaching of classical and quantum mechanics. The ability
to automate repetitive calculations and explore "what if"
scenarios empowers students to explore scientific hypothe-
ses with an unprecedented level of detail, fostering innova-

tion and creativity. In addition to educational advancements,
computer science is driving innovation in other fields, such
as eye-tracking technology and anomaly detection. Eye-
tracking, which involves the measurement of eye movement
and pupil diameter, has become an invaluable tool in fields
like psychology, education, and human-computer interaction.
Recent research has focused on improving the accuracy and
accessibility of eye-tracking systems, particularly through
the use of webcams and deep learning models. Traditional
eye-tracking systems, which use specialized hardware, have
long been prohibitively expensive for many researchers and
educators. However, advancements in computer vision and
machine learning have made it possible to develop low-cost
alternatives that utilize everyday webcams to capture eye
movements with high precision. These developments have
democratized access to eye-tracking technology, enabling
a broader range of applications, from usability testing in
software design to research in cognitive psychology.

One significant contribution is the development of the
EyeDentify dataset, which provides a robust foundation for
training models to estimate pupil diameter from webcam
images [7]. This dataset contains diverse eye images across
different lighting conditions, head positions, and ethnic back-
grounds, making it a valuable resource for building more
accurate and inclusive models. Additionally, upscaling tech-
niques have further improved the precision of these models,
making webcam-based eye-tracking a viable alternative to
more expensive equipment [8] [9]. By leveraging deep learn-
ing algorithms, researchers can now track eye movements
in real-time with minimal hardware requirements, enabling
new applications in virtual reality (VR) environments, online
education, and user interface design. For instance, in VR
settings, eye-tracking can be used to enhance user experience
by allowing systems to adjust visual focus based on where
the user is looking, creating a more immersive and effi-
cient interaction. This technological advancement also holds
promise for accessibility, as it can be integrated into assistive
technologies for individuals with disabilities, enabling them
to control devices with eye movements.

The growing accessibility of webcam-based eye-tracking
has also spurred new avenues of research in education, where
it is being used to study reading patterns, cognitive load, and
attention in online learning environments. For instance, eye-
tracking data can be used to analyze how students interact
with digital content, providing insights into which parts
of the material are most engaging or confusing. This can
help educators tailor their instructional strategies to better
meet the needs of their students. Furthermore, in cognitive
psychology, eye-tracking allows researchers to explore how
individuals process visual information, revealing patterns
of attention, decision-making, and memory recall. This is
particularly useful in studying populations with neurodiverse
conditions, such as autism spectrum disorder (ASD), where
eye-tracking data can provide valuable insights into how
individuals with ASD perceive and interact with their envi-
ronment.
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Figure 1. Attention Prediction with AI and Eye Tracking

Another critical area of research is anomaly detection,
which is essential for identifying unusual patterns or behav-
iors in data across various industries. Traditional approaches
to anomaly detection often involve centralized data collec-
tion, which can pose privacy risks, especially when dealing
with sensitive information [10]. For example, in healthcare,
the identification of anomalies in patient data can lead to
early detection of diseases or unusual patient outcomes, but
the need for centralized data aggregation raises concerns
about data security and patient privacy. Federated learning,
a decentralized approach to machine learning, addresses this
challenge by allowing models to be trained on local data
without the need for data centralization. This method pre-
serves privacy while still enabling robust anomaly detection
[11] [12]. Federated learning is particularly relevant in do-
mains such as cybersecurity, finance, and critical infrastruc-
ture monitoring, where sensitive data must remain private
while maintaining the ability to detect abnormal behaviors
indicative of security threats or system failures.

In healthcare, for instance, anomaly detection algorithms
are used to monitor vital signs, detect early symptoms of
medical conditions, or flag irregularities in diagnostic imag-
ing. However, traditional machine learning models require
large datasets to achieve high accuracy, often necessitating
the centralization of sensitive medical records. Federated
learning circumvents this issue by enabling hospitals and
research institutions to collaborate on training a shared model

without exposing patient data, thus maintaining compliance
with privacy regulations such as the Health Insurance Porta-
bility and Accountability Act (HIPAA) in the United States
or the General Data Protection Regulation (GDPR) in Eu-
rope. A recent benchmark, FedAD-Bench, was introduced to
standardize the evaluation of federated learning models for
anomaly detection, highlighting the growing importance of
privacy-preserving techniques in fields such as healthcare and
cybersecurity. This benchmark provides a structured evalua-
tion framework for assessing the performance of federated
anomaly detection algorithms across different datasets and
domains, ensuring that these models can generalize well
without compromising privacy.

To further illustrate the evolving landscape of federated
learning and its application in anomaly detection, the ta-
ble below provides a comparative analysis of various ap-
proaches to anomaly detection, contrasting traditional cen-
tralized models with federated learning models in terms of
accuracy, privacy, and scalability.

The table outlines the trade-offs between different ap-
proaches, highlighting how federated learning balances pri-
vacy and scalability, albeit sometimes at the expense of
slight reductions in accuracy compared to centralized mod-
els. Nonetheless, the benefits of preserving data privacy while
enabling large-scale, collaborative machine learning efforts
are substantial, particularly in sectors where data sensitivity
is paramount.
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Table 1. Comparison of Traditional and Federated Learning Models for Anomaly Detection

Model Type Accuracy Privacy Scalability
Centralized Anomaly Detection High Low Moderate
Federated Learning-based Anomaly Detection Moderate to High High High
Privacy-Preserving Centralized Models High Moderate Low

In conclusion, the integration of computer science into
natural science education and the advancement of technolo-
gies like eye-tracking and federated learning for anomaly
detection signify a broader trend toward interdisciplinary in-
novation. These developments not only enhance educational
outcomes but also drive progress in research and industry by
providing new tools and methodologies for solving complex
problems. As we continue to explore the intersections of
these fields, the potential for further breakthroughs in both
education and applied research remains vast.

II. INTEGRATING COMPUTER SCIENCE INTO NATURAL
SCIENCE EDUCATION
The integration of computer science into natural science cur-
ricula represents a significant transformation in how scientific
education is approached. As computational methods become
increasingly important in scientific research, equipping stu-
dents with these skills has moved from being an advantage to
a necessity. The historical divide between computer science
and the natural sciences is no longer practical in a world
where data analysis, simulations, and algorithmic modeling
are essential to scientific advancement. Indeed, computa-
tional thinking is now a cornerstone of modern science, em-
powering researchers to address increasingly complex prob-
lems with precision and innovation. This shift underscores
the need for educational systems to reflect these develop-
ments by incorporating computer science into the very fabric
of natural science instruction.

One of the primary benefits of integrating computer sci-
ence into natural science education is that it provides stu-
dents with hands-on experience using computational tools.
By weaving programming and data analysis into science
courses, students not only learn the theoretical underpinnings
of scientific principles but also acquire practical, applicable
skills that are vital in contemporary research settings [13]
[14]. For instance, students may use programming languages
such as Python or R to simulate biological systems, enabling
them to conduct virtual experiments by manipulating vari-
ables and observing the resulting changes. This approach
immerses students in an active learning environment where
they directly engage with scientific phenomena through com-
putational methods. As a result, they develop a deeper and
more nuanced understanding of the underlying processes and
dynamics at play. Such hands-on computational exercises are
particularly valuable in fields like ecology or systems biol-
ogy, where the complexity of interactions between organisms
or within cellular networks can be explored in ways that are
difficult or impossible to achieve in a physical lab setting.

Moreover, the integration of computational methods into

natural science instruction allows students to experiment with
scenarios that extend far beyond the constraints of tradi-
tional laboratory environments. Simulations and computa-
tional models can render abstract concepts more tangible by
visualizing data in a manner that enhances comprehension.
For example, in a physics course, students can use simu-
lations to explore quantum phenomena or to visualize how
particles behave under extreme conditions that are not easily
replicable in a physical lab. The ability to model such systems
computationally significantly enhances students’ conceptual
understanding of the material, providing them with tools
to probe scientific questions that would otherwise be inac-
cessible [15]. These simulations not only elucidate difficult
concepts but also foster an iterative learning process, where
students can refine their hypotheses and methodologies based
on computational feedback, thus promoting a more engaged
and scientific approach to learning.

Another key benefit is the interdisciplinary nature of com-
putational science, which fosters collaboration across fields.
By teaching students how to apply computational meth-
ods to solve scientific problems, educators prepare them to
work in interdisciplinary teams where expertise from mul-
tiple domains is required. This ability to collaborate across
disciplines is becoming increasingly important as many of
today’s most pressing global challenges—such as climate
change, sustainable energy, and public health—require so-
lutions that draw on knowledge from various fields. For
example, a climate modeler might need to collaborate with
computer scientists to design algorithms that optimize data
processing, or a biologist might work alongside software
engineers to create simulations of biological processes that
are too intricate for traditional experimentation. In this sense,
computational science serves as a bridge, linking the natural
sciences with other fields such as engineering, mathematics,
and social sciences, and enabling more holistic approaches to
problem-solving.

Additionally, the infusion of computer science concepts
into natural science education fosters the development of
critical thinking and problem-solving skills. The process
of writing code to simulate experiments or analyze data
forces students to think algorithmically, breaking down com-
plex problems into smaller, manageable parts that can be
addressed sequentially. This mirrors the scientific method
itself—defining a problem, forming a hypothesis, conducting
an experiment, and analyzing the results. However, by lever-
aging computational tools, students can conduct this cycle
more efficiently and with far greater precision, especially
when dealing with large datasets or complex models. For ex-
ample, in fields such as genetics, where datasets are too large
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to be processed manually, students can use machine learn-
ing techniques to detect patterns within genomic sequences,
leading to faster and more accurate scientific discoveries.
Similarly, in environmental science, students can apply data
analytics to satellite data to track deforestation patterns or
predict the impact of climate change on biodiversity.

Furthermore, the accessibility of computational tools de-
mocratizes the learning process. Open-source platforms, such
as Jupyter Notebooks and Google Colab, provide students
with easy-to-use environments for learning programming
and data analysis without requiring extensive computational
infrastructure. These platforms support a range of program-
ming languages and libraries, making them ideal for students
in natural science disciplines who may not have prior ex-
perience with computer science. By lowering the barriers
to entry, such platforms allow a wider range of students to
engage with computational science, which in turn promotes
diversity and inclusion in STEM fields.

In addition to enhancing individual learning, the inte-
gration of computer science into natural science education
encourages collaborative learning and peer-to-peer teaching.
Many computational problems, particularly those involving
large datasets or complex simulations, benefit from team-
work and the sharing of expertise. In this collaborative en-
vironment, students can work together on coding projects,
troubleshooting errors, and developing algorithms, all of
which mimic the collaborative nature of real-world scien-
tific research. This not only improves their technical skills
but also prepares them for the collaborative work that is
common in professional scientific settings. Moreover, by
working in teams, students can take on roles that best match
their strengths—whether that be coding, data analysis, or
conceptual modeling—thereby fostering a sense of shared
responsibility and mutual support.

The implementation of computational tools also changes
the way students perceive failure in science. Traditional wet-
lab experiments often come with time and material con-
straints, and mistakes can be costly in terms of both resources
and time. However, in a computational environment, students
can iterate quickly, learning from errors without significant
penalties. This promotes a growth mindset, where failure is
seen not as an endpoint but as a step toward mastery. The
ease with which computational models can be revised and
rerun encourages students to experiment more freely and
take intellectual risks, which can lead to more innovative and
creative scientific thinking.

In addition to providing practical benefits in terms of
teaching and learning, the integration of computer science
into natural science education prepares students for the work-
force, where computational skills are in high demand. Many
industries, including biotechnology, pharmaceuticals, envi-
ronmental consulting, and engineering, are increasingly re-
liant on computational models to analyze data, predict trends,
and optimize processes. Students who have experience in
applying computational methods to scientific questions will
therefore be better equipped to meet the demands of the mod-

Figure 2. Eye-tracking Technologies in Mobile Devices Using Edge
Computing

ern job market. The interdisciplinary and problem-solving
skills they acquire will make them attractive candidates for a
wide range of careers in research, industry, and government.

To illustrate the growing importance of computational
skills in natural sciences, the table below provides an
overview of key computational tools and their applications
in various scientific disciplines.

In conclusion, the integration of computer science into nat-
ural science education represents a critical evolution in how
scientific knowledge is taught and applied. By equipping stu-
dents with computational tools, educators not only enhance
the learning experience but also prepare future scientists to
address complex, data-driven challenges in their respective
fields. As computational methods continue to permeate every
aspect of scientific research, their inclusion in the natural
sciences will be instrumental in cultivating a generation
of scientists capable of interdisciplinary collaboration and
innovative problem-solving.

III. ADVANCEMENTS IN WEBCAM-BASED
EYE-TRACKING TECHNOLOGIES
Eye-tracking technology has experienced substantial ad-
vancements in recent years, primarily driven by the goal
of making these systems more accessible, affordable, and
adaptable to various research environments. Traditionally,
eye-tracking required the use of specialized hardware, which
was expensive and constrained to specific experimental se-
tups or laboratory environments. This limitation restricted the
widespread adoption of eye-tracking technologies in fields
such as psychology, education, and human-computer inter-
action (HCI). However, recent breakthroughs in webcam-
based eye-tracking, combined with advancements in deep
learning and image processing techniques, have enabled ac-
curate estimation of pupil diameter and eye movement using
standard, widely available webcams [16] [17] [18]. These
advancements have lowered the entry barriers, democratizing
the technology for researchers, educators, and even casual
users, allowing for a broader range of applications in both
research and industry.

One of the most notable contributions to this rapidly
evolving field is the EyeDentify dataset. This dataset pro-
vides an extensive collection of webcam images that are

VOLUME 9, 2024



Table 2. Key Computational Tools and Their Applications in Natural Science Disciplines

Tool Primary Discipline Application Example Task
Python (SciPy, NumPy) Biology, Chemistry Data Analysis, Simulation Protein structure prediction
R (ggplot2, dplyr) Ecology, Environmental Science Statistical Analysis Biodiversity pattern analysis
MATLAB Physics, Engineering Numerical Computing Simulation of fluid dynamics
TensorFlow Neuroscience, Medicine Machine Learning Neural network modeling
Jupyter Notebooks Interdisciplinary Interactive Coding Environment Exploratory data analysis

crucial for training machine learning models to estimate
pupil diameter accurately from non-specialized hardware.
The availability of such datasets has been instrumental in
propelling the development of accurate and reliable webcam-
based eye-tracking systems. By providing diverse training
data—including images with varying lighting conditions,
head poses, and individual facial differences—the EyeDen-
tify dataset enables the development of models that can gen-
eralize well across different environments and populations.
This is particularly important for real-world applications,
where factors such as ambient light and user movement can
otherwise degrade the performance of eye-tracking systems.
Additionally, it is important to note that models trained on di-
verse datasets tend to exhibit better robustness and accuracy,
which are critical for delivering reliable results in real-time
applications [19].

The advancements made possible by datasets like Eye-
Dentify have wide-reaching implications, particularly in ed-
ucational research. For instance, webcam-based eye-tracking
is becoming a valuable tool for understanding students’
visual attention during digital learning. Eye-tracking data
can reveal where and for how long students focus their
gaze during a lesson, allowing educators to gauge which
materials engage students most effectively. By understanding
patterns of attention, researchers can design more engaging
and personalized educational content. Moreover, webcam-
based eye-tracking can help identify moments when students
become distracted or overwhelmed, providing educators with
actionable insights for adjusting instructional strategies in
real-time [20] [21]. This application is especially important in
the context of online learning, where instructors lack direct,
physical feedback from students.

Another major advancement in this field is the develop-
ment of upscaling techniques, which have further enhanced
the precision and accuracy of webcam-based eye-tracking
systems. These techniques focus on improving the resolution
of the webcam images, allowing for more detailed track-
ing of subtle eye movements. Upscaling can be achieved
through software enhancements that use machine learning
algorithms to increase image clarity, allowing the system
to detect minute changes in pupil size and movement. This
increased resolution is particularly crucial for fields like cog-
nitive research and user experience design, where even small
discrepancies in eye-tracking data can lead to significant
misinterpretations of user behavior. For example, in cogni-
tive research, accurate tracking of eye movements can help
identify how people process visual stimuli, make decisions,

or recall information from memory, providing deeper insights
into the workings of the human brain. In user experience
(UX) design, detailed eye-tracking data can inform designers
about how users navigate interfaces, enabling them to refine
layouts and interactions for a more intuitive and seamless
experience.

These technological advancements are also proving to be
transformative in the field of human-computer interaction
(HCI). Eye-tracking is increasingly being utilized to cre-
ate more intuitive and responsive interfaces, particularly in
emerging technologies like virtual reality (VR) and aug-
mented reality (AR). In these environments, understanding
where users are looking allows for the development of gaze-
based controls, which can enhance the immersion and inter-
activity of VR/AR experiences. For instance, in a VR setting,
the system could adjust the focus of the virtual environ-
ment based on where the user is looking, creating a more
realistic and engaging experience. Similarly, in AR, gaze-
based interactions could allow users to interact with digital
objects overlaid onto the physical world simply by looking
at them, thus reducing the need for physical controllers or
complex gestures [22] [23]. As webcam-based eye-tracking
technology continues to improve, its applications in these
fields are expected to expand, leading to more sophisticated
and immersive digital environments.

Furthermore, the affordability and scalability of webcam-
based eye-tracking systems open up new possibilities for
large-scale studies in fields that were previously limited by
cost constraints. In psychology, for example, researchers can
now collect eye-tracking data from participants remotely,
using only the participants’ own webcams. This allows for
larger sample sizes and more diverse populations, which in
turn enhances the generalizability of research findings. Re-
mote eye-tracking also has applications in marketing, where
companies can study consumer behavior and visual attention
toward advertisements or product designs without the need
for expensive in-person setups. This flexibility is invaluable
for businesses looking to optimize user experience or assess
the effectiveness of their visual marketing strategies on a
global scale.

The use of eye-tracking data is also growing in the health-
care sector, where it holds potential for both diagnostics
and rehabilitation. For instance, webcam-based eye-tracking
could be used to monitor patients with neurological condi-
tions, such as Alzheimer’s disease or Parkinson’s disease,
by tracking changes in their eye movement patterns over
time. Since eye movements are often correlated with cog-
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Figure 3. EyeLoop: An open-source, high-speed eye-tracker designed for dynamic experiments

nitive function, analyzing these patterns could provide early
indications of cognitive decline or help track the progression
of neurological disorders. In rehabilitation, eye-tracking sys-
tems could be employed to monitor the recovery of patients
with motor impairments or to aid in the development of
assistive technologies that allow individuals with limited
mobility to control computers or other devices using only
their gaze.

As the capabilities of webcam-based eye-tracking continue
to expand, so do its applications across various domains.
The growing interest in eye-tracking for understanding hu-
man behavior in digital environments is indicative of its
versatility and utility. In education, healthcare, HCI, and
cognitive science, eye-tracking technologies offer unprece-
dented insights into visual attention, decision-making, and
interaction patterns. The integration of deep learning and
upscaling techniques into these systems ensures that they will
continue to become more accurate, adaptable, and accessible
over time.

In conclusion, the advancements in webcam-based eye-
tracking technologies represent a significant leap forward in
the accessibility and applicability of this powerful tool. From
the development of comprehensive datasets like EyeDentify
to the enhancement of tracking precision through upscaling
techniques, these innovations are democratizing eye-tracking
and opening up new opportunities for research and applica-
tion in diverse fields. As the technology continues to evolve,
it promises to unlock further potential in areas ranging from
education and healthcare to virtual reality and user experi-
ence design, transforming the ways in which we study and
interact with both digital and physical environments.

This table highlights the trade-offs between traditional
eye-tracking systems and the newer, webcam-based systems.
While traditional systems offer the highest accuracy, they
come with significant hardware and financial costs, making
them less accessible to a wide range of users. On the other
hand, webcam-based systems, particularly those enhanced
with AI and upscaling techniques, provide a more affordable
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Table 3. Comparison of Traditional and Webcam-Based Eye-Tracking Systems

System Type Hardware Requirements Cost Accuracy
Traditional Eye-Tracking Systems Specialized Hardware High Very High
Webcam-Based Eye-Tracking Systems Standard Webcam Low Moderate to High
AI-Enhanced Webcam Systems Standard Webcam with AI Upscaling Low to Moderate High

and scalable solution, offering sufficient accuracy for most
applications without the need for specialized hardware.

IV. FEDERATED LEARNING AND ANOMALY DETECTION
Anomaly detection plays a critical role across various indus-
tries, where the timely identification of unusual patterns or
behaviors is essential for addressing issues such as fraud,
system failures, or medical diagnostics. In sectors such as
finance, healthcare, and cybersecurity, the ability to detect
anomalies can prevent large-scale fraud, aid in the early de-
tection of diseases, and identify security breaches before they
escalate. Traditionally, anomaly detection has been heavily
reliant on centralized data collection, where large datasets are
aggregated into a single location to train machine learning
models. However, this approach raises significant privacy
concerns, especially when the data involved contains sensi-
tive information, such as personal financial transactions or
medical records.

Federated learning has emerged as a promising solution
to the privacy concerns associated with centralized data
collection for anomaly detection. Unlike traditional machine
learning models, which require data to be centralized for
training, federated learning allows models to be trained
locally on distributed datasets. Data remains stored in its
original location, and only the model parameters are shared
between institutions or devices. This decentralized approach
to machine learning is particularly advantageous for organi-
zations dealing with sensitive data, as it ensures privacy by
keeping the raw data local while still enabling the develop-
ment of robust models for anomaly detection [24] [25]. By
enabling collaborative learning across organizations without
compromising data privacy, federated learning represents a
significant advance in both machine learning and privacy-
preserving technologies.

The application of federated learning to unsupervised
anomaly detection has shown immense potential in numer-
ous sectors, from healthcare to cybersecurity. Unsupervised
anomaly detection involves identifying patterns in data that
deviate from the norm without relying on labeled examples of
normal or anomalous behavior. This is particularly useful in
fields like healthcare, where anomalies in medical data, such
as unusual patterns in diagnostic imaging or irregularities in
vital signs, may indicate the onset of disease or deterioration
in a patient’s condition. However, given the sensitive nature
of patient data, centralized approaches to anomaly detec-
tion are often impractical due to privacy regulations such
as the Health Insurance Portability and Accountability Act
(HIPAA) in the United States or the General Data Protection
Regulation (GDPR) in Europe. Federated learning addresses

these concerns by allowing healthcare providers to collabo-
rate on model development without the need to expose patient
data to third parties or centralized databases [10].

In healthcare, federated learning for anomaly detection
can be used to identify rare but critical conditions, such
as early-stage cancer or undiagnosed genetic disorders, by
analyzing medical records, imaging data, and vital sign pat-
terns across multiple institutions. By combining data insights
from different hospitals and clinics while preserving patient
confidentiality, federated learning enables the development
of more accurate and generalized models, which can then be
used to detect anomalies across diverse patient populations.
For example, a federated anomaly detection system could
flag irregularities in a patient’s electrocardiogram (ECG) data
that might indicate an undiagnosed heart condition, without
needing to centralize the sensitive ECG datasets from multi-
ple healthcare providers. This collaborative yet decentralized
approach ensures that the medical community benefits from
shared knowledge and data without compromising the secu-
rity or privacy of the patients involved.

Beyond healthcare, federated learning is also proving to
be invaluable in the field of cybersecurity, where detecting
anomalies in network activity is critical for identifying po-
tential threats. Cybersecurity systems depend on the ability
to detect unusual patterns of behavior, such as unauthorized
access, abnormal traffic spikes, or the exfiltration of data.
However, as organizations become increasingly intercon-
nected, traditional centralized methods of anomaly detection,
which rely on aggregating data from multiple sources, are
becoming less feasible due to privacy concerns and the sheer
volume of data involved. Federated learning offers an inno-
vative solution by enabling multiple organizations to collab-
oratively develop cybersecurity models that detect anomalies
across distributed datasets without the need for data sharing
[26]. In this context, federated anomaly detection enables
organizations to detect security threats in real-time across a
range of environments, while simultaneously maintaining the
confidentiality of their internal data.

In practice, federated learning for cybersecurity anomaly
detection works by training local models at each organization
based on their network activity logs. The organizations then
share updates to the global model, allowing for collabora-
tive learning that reflects the diverse range of cybersecurity
threats faced by different sectors, such as finance, healthcare,
and critical infrastructure. By decentralizing the training
process, federated learning mitigates the risk of exposing
sensitive internal network data to external parties, which is
crucial for organizations that handle classified or proprietary
information. Additionally, as cybersecurity threats become
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more sophisticated and varied, the ability to detect anomalies
in real-time while preserving data privacy will be essential for
preventing widespread breaches, malware attacks, or other
forms of cybercrime [27].

One of the key innovations in federated learning for
anomaly detection is the introduction of benchmarks like the
FedAD-Bench framework. FedAD-Bench provides a unified
platform for evaluating the performance of federated learning
models in anomaly detection across different datasets and
industries. By offering standardized evaluation metrics and
datasets, FedAD-Bench enables researchers and practitioners
to assess the robustness, accuracy, and scalability of their
federated models. This is especially important in domains
such as healthcare and cybersecurity, where the stakes for
anomaly detection are particularly high. FedAD-Bench not
only ensures that models can perform well across diverse
datasets but also fosters collaboration between industries that
may otherwise have been siloed due to privacy concerns.
For instance, a model developed for detecting anomalies in
medical data could be adapted and tested on cybersecurity
datasets using the same framework, providing valuable cross-
domain insights.

In addition to enabling privacy-preserving collaborations,
federated learning has the added benefit of scalability. In
traditional centralized anomaly detection systems, as the vol-
ume of data grows, the computational and storage demands
of centralizing that data become increasingly burdensome.
By contrast, federated learning distributes the computational
load across the network of participating devices or institu-
tions, each of which only needs to process and store its
own data. This decentralized approach not only reduces the
infrastructure costs associated with anomaly detection but
also allows for real-time updates as new data is collected
locally, enabling more dynamic and responsive anomaly de-
tection systems. This is particularly useful in industries such
as finance, where large volumes of transactional data are
generated daily, and the ability to detect anomalies in real-
time is critical for preventing fraud.

To better understand the strengths and limitations of differ-
ent federated learning approaches in anomaly detection, the
following table provides a comparative analysis of key fea-
tures across centralized, decentralized, and federated models.

The table highlights the trade-offs between traditional cen-
tralized models, decentralized models, and federated learning
approaches. Centralized models typically offer high accuracy
but come at the cost of data privacy and significant infras-
tructure investment. Decentralized models improve privacy
somewhat but often struggle with scalability and may not
be as accurate. Federated learning strikes a balance between
these approaches by offering strong privacy protections, good
scalability, and competitive accuracy, all while reducing in-
frastructure costs through decentralized computation.

In conclusion, federated learning represents a transfor-
mative approach to anomaly detection, enabling privacy-
preserving, scalable, and accurate model development across
a range of industries. By addressing the inherent limitations

of centralized data collection, federated learning opens up
new possibilities for collaboration between organizations,
particularly in sectors where privacy concerns have histori-
cally hindered data sharing. Whether applied to healthcare,
cybersecurity, or finance, the advancements in federated
anomaly detection are poised to revolutionize the way or-
ganizations detect and respond to anomalies in their data,
safeguarding both privacy and security in an increasingly
data-driven world.

V. CONCLUSION
The interdisciplinary integration of computer science into
natural science education, along with advancements in eye-
tracking technology and anomaly detection, signifies a pro-
found transformation in both educational methodologies and
research practices. By embedding computational methods
into natural science curricula, educators are not merely en-
hancing the learning experience; they are equipping students
with essential skills that are increasingly indispensable for
navigating the complexities of modern scientific research.
The ability to apply algorithmic thinking, data analysis, and
simulation in fields such as biology, physics, and environ-
mental science is revolutionizing how scientific concepts are
taught and understood, ultimately preparing students to solve
the intricate, data-driven problems of the future.

Advances in webcam-based eye-tracking technologies
highlight the democratization of powerful research tools
that were once accessible only to a select few due to cost
and hardware limitations. The development of deep learning
models that can accurately track pupil movements using
standard webcams has broadened the scope of eye-tracking
applications, from educational research to user experience
design and cognitive psychology. These systems allow for
a more nuanced understanding of visual attention, cognitive
load, and user interaction patterns, offering researchers an
affordable and scalable means to gather critical insights. As
these technologies become more refined, they are poised
to further enhance the study of human behavior in digital
environments, including virtual and augmented reality, where
eye-tracking plays a vital role in optimizing user experience.

Similarly, the advancements in federated learning for
anomaly detection underscore the growing importance of
privacy-preserving technologies in industries where data sen-
sitivity is paramount. Federated learning enables organiza-
tions to collaborate on developing models for anomaly detec-
tion without compromising the privacy of their data, offering
a solution to one of the most pressing challenges of the data-
driven age. Whether applied in healthcare to detect medical
anomalies while maintaining patient confidentiality, or in
cybersecurity to detect potential threats across distributed
networks, federated learning provides a scalable and efficient
means of identifying anomalies in real-time. This technol-
ogy ensures that organizations can benefit from collective
intelligence without sacrificing the security and privacy of
their data, thereby addressing both ethical and operational
concerns.
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Table 4. Comparison of Centralized, Decentralized, and Federated Learning Models for Anomaly Detection

Model Type Data Privacy Scalability Accuracy Infrastructure Cost
Centralized Anomaly Detection Low Moderate High High
Decentralized Anomaly Detection Moderate Low Moderate Moderate
Federated Learning-based Anomaly Detection High High Moderate to High Low

As these computational techniques continue to evolve,
their applications will only expand, offering novel solutions
to some of the most complex and pressing issues of our time.
From enhancing the educational experience and enabling
more effective scientific research, to securing critical systems
and detecting anomalies in sensitive data, the convergence of
computer science with other disciplines is driving a paradigm
shift in how we understand and interact with the world. Look-
ing forward, the ongoing refinement of these technologies
promises to unlock new opportunities for innovation across a
wide range of fields, creating a future where interdisciplinary
collaboration and computational prowess are central to ad-
dressing global challenges.
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