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             Abstract 
Microservice architectures have revolutionized the way distributed systems are designed, 
offering enhanced scalability, flexibility, and resilience. However, the complexity of 
managing numerous interconnected services poses significant challenges in ensuring 
system reliability and performance, particularly when detecting anomalies in real-time. 
Traditional monitoring tools often struggle with the high-dimensionality and dynamic 
nature of microservices. This paper presents a comprehensive evaluation of AI-driven 
techniques for anomaly detection in microservice environments, focusing on both 
supervised and unsupervised learning models, as well as time-series forecasting methods. 
Through an extensive analysis of Random Forest, Support Vector Machines (SVM), 
Autoencoders, Isolation Forest, ARIMA, LSTM, and Prophet models, we demonstrate their 
effectiveness in detecting performance anomalies across various system metrics such as 
CPU usage, memory consumption, network I/O, and latency. The results indicate that LSTM 
and Random Forest offer the highest precision and recall rates, while hybrid models 
combining multiple techniques present a promising avenue for improving detection 
accuracy. Our findings contribute to the growing body of research aimed at optimizing 
anomaly detection frameworks for microservice architectures, highlighting the importance 
of leveraging AI to address the evolving challenges of modern distributed systems. 

 

Keywords: Microservice architectures, Anomaly detection, Machine learning, Time series models, AI-based 
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Introduction 
The rise of microservice architectures in software development has fundamentally transformed 

the design and management of distributed systems, allowing for improved scalability, flexibility, 

and resilience. Microservices break down monolithic applications into smaller, loosely coupled 

services that can be independently deployed, developed, and scaled [1]. However, with this 

architectural shift comes the complexity of managing and monitoring the health of numerous 

interconnected services, where performance anomalies and failures can quickly propagate 

across the system, leading to potential downtimes and system degradation. Consequently, 

there is a growing need for advanced techniques to detect anomalies in these environments, as 

traditional monitoring tools often fall short of capturing the intricate interactions between 

services in real-time distributed settings. Anomaly detection in microservices is crucial for 

maintaining the overall system health and reliability. Anomalies, which can stem from resource 

overutilization, network bottlenecks, or service misconfigurations, can lead to cascading failures 

if left unaddressed [2]. These anomalies may manifest as irregularities in system metrics such 
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as CPU usage, memory consumption, latency, and network I/O. Detecting such irregularities in 

real-time requires leveraging sophisticated AI-driven techniques capable of handling high-

dimensional data and identifying subtle, complex patterns that indicate deviations from normal 

behavior [3]. 

The application of AI, particularly machine learning (ML) algorithms, has emerged as an 

effective approach to anomaly detection in microservices due to its ability to learn from large 

datasets and generalize over unseen data. Both supervised and unsupervised ML models have 

been utilized to detect anomalies by analyzing system metrics and logs, with methods such as 

Support Vector Machines (SVM), Random Forests, and autoencoders proving effective in 

identifying abnormal system behavior [4]. Supervised learning models, such as SVM and 

Random Forests, rely on labeled data to classify instances as normal or anomalous. However, 

the challenge lies in acquiring labeled datasets for microservice environments, which often 

require manual annotation and can be time-consuming [5]. On the other hand, unsupervised 

learning techniques, such as autoencoders and Isolation Forests, offer promising solutions by 

learning the underlying patterns of normal behavior without requiring labeled data. These 

models identify anomalies by detecting deviations from the learned normal patterns, making 

them well-suited for environments where anomalies are rare and labeling is infeasible. 

Furthermore, time-series models like LSTM (Long Short-Term Memory) networks have been 

employed to capture temporal dependencies in microservice metrics, such as request latency 

and network traffic, improving the detection of anomalies over time [6].  Recent studies 

highlight the importance of combining multiple AI techniques to improve the accuracy and 

robustness of anomaly detection systems in microservice architectures [7]. Hybrid models that 

blend supervised and unsupervised methods, along with time-series forecasting techniques, 

offer a comprehensive approach to anomaly detection, ensuring both real-time responsiveness 

and predictive capabilities. Despite significant advancements, challenges remain in scaling 

these techniques to handle the growing complexity and volume of data generated by 

microservice environments [8]. 

In this study, we aim to explore and compare the efficacy of various AI-based anomaly detection 

techniques—ranging from supervised models like SVM and Random Forests to unsupervised 

models such as autoencoders and Isolation Forests, as well as time-series models like LSTM and 

ARIMA—in microservice architectures. By leveraging these methods, we seek to provide 

insights into the advantages and limitations of each approach in detecting anomalies in real-

time, contributing to the growing body of research aimed at improving the reliability of 

microservice-based systems. 

Background and Related Work 

Anomaly detection in microservice architectures has emerged as a critical area of research due 

to the complexity of managing distributed systems. These architectures, which consist of 

loosely coupled services, demand constant monitoring for anomalies that can degrade 

performance, such as abnormal CPU utilization, memory consumption, and network latency. 

Various approaches have been developed over the years to detect such anomalies, leveraging 

AI and machine learning (ML) techniques to improve detection accuracy and system reliability. 

Early work in anomaly detection often relied on threshold-based methods. These systems, 

which flagged metrics exceeding predefined thresholds, were simple and widely adopted but 

insufficient for microservice environments characterized by fluctuating loads and dependencies 
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among services. Traditional monitoring tools struggled to capture complex interactions 

between services and often produced high false-positive rates [3], [9]. 

AI and Machine Learning in Anomaly Detection 

The introduction of AI and ML techniques has brought significant advancements to anomaly 

detection. Machine learning models can learn from historical data and generalize patterns to 

detect anomalies in real-time. Supervised learning methods, such as Support Vector Machines 

(SVM) and Random Forests, are widely used to classify normal and anomalous behaviors in 

microservices. Supervised learning approaches also face challenges with imbalanced datasets, 

where normal instances far outweigh anomalous ones. Techniques such as oversampling and 

class weighting have been applied to mitigate these issues [10], [11]. Despite these challenges, 

supervised learning methods like SVM and Random Forests remain effective when sufficient 

labeled data is available for training models [12]. In environments where labeled data is scarce, 

unsupervised learning methods have gained popularity [13]–[15]. These approaches, such as 

clustering and autoencoders, learn the underlying structure of normal data and flag deviations 

as anomalies. Other unsupervised approaches include clustering methods, such as K-Means, 

which group data into clusters and flag points that do not belong to any cluster as anomalies. 

These methods are particularly useful in microservice architectures, where labeled data is often 

unavailable, and anomalies are rare but critical to detect. Many metrics in microservice 

architectures, such as request latencies and network I/O, are time-series data, requiring 

specialized methods for anomaly detection. To address these limitations, deep learning-based 

approaches like Long Short-Term Memory (LSTM) networks have been applied to capture both 

short-term and long-term dependencies in microservice metrics [16]. LSTM models have proven 

to be effective in modeling non-linear temporal dependencies, making them particularly useful 

for detecting anomalies in time-series data from microservices [6]. 

Hybrid Approaches 

Recent studies have emphasized the importance of hybrid models, which combine the strengths 

of multiple machine learning techniques. For example, hybrid models that integrate 

autoencoders with Random Forests or Isolation Forests have shown improved accuracy in 

detecting both known and unknown anomalies.  These models leverage the unsupervised 

learning capabilities of autoencoders to detect unknown anomalies, while supervised models 

handle known anomalies more effectively. 

Hybrid time-series models combining ARIMA and LSTM have also been developed to detect 

anomalies in microservice environments with seasonal patterns. These models apply ARIMA for 

trend analysis and LSTM for capturing non-linear dependencies, offering a robust solution for 

anomaly detection in complex microservice architectures. Despite advancements, several 

challenges remain in anomaly detection for microservice architectures. One of the primary 

challenges is scaling AI models to handle the large volumes of real-time data generated by 

microservices. Techniques such as distributed learning and federated learning have been 

explored to improve scalability, but further research is needed. Finally, hybrid models 

combining supervised, unsupervised, and time-series techniques represent a promising 

direction for improving the robustness of anomaly detection systems in microservices [17]. 

These models could adapt to the dynamic nature of microservices while providing real-time 

anomaly detection with minimal false positives and negatives. 
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Figure 1. Visualizing CPU Usage, Memory, Network I/O, and Latency with detected anomalies marked as red crosses 

Methodology 

In this section, we will explore various AI-based methods for anomaly detection, including both 

supervised and unsupervised approaches. Each method will be accompanied by a detailed 

mathematical foundation, which will explain how these techniques are used to monitor and 

detect anomalies in microservices. 

Dataset 

We begin by collecting a rich dataset from microservice-based architectures, which includes 

diverse system-level metrics such as CPU usage, memory consumption, network I/O, request 

latencies and anomalies as shown in Figure 1. These metrics are captured from a distributed 

system, where microservices interact with one another across containers or nodes. The dataset 

can be either labeled ( , )X Y  for supervised learning, where 
n dX   represents the matrix 
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of system metrics with n instances and d features, and {0,1}nY   denotes the anomaly labels 

for each instance; or unlabeled 
n dX   for unsupervised learning. In our case, each feature 

vector 
iX  in the dataset represents a collection of monitoring metrics, such as the CPU 

utilization percentage 
1ix , memory consumption 

2ix , network I/O 
3ix , and latency metrics 

4 , ,i idx x , where 1 2[ , , , ]i i i idX x x x=  • . These metrics capture the performance of 

microservices under various loads. To handle the temporal nature of some data, such as latency 

or request times, the dataset is further indexed by time intervals 
1 2, , , Tt t t , where 

itX  

denotes the feature vector at time t.  

 
Figure 2. Distributions of CPU Usage, Memory Consumption, Network I/O, and Latency 

This multidimensional time series data can be structured as 
n d TX   , where each slice 

corresponds to a snapshot of the system state. The dataset undergoes preprocessing, including 

data normalization, to account for scale differences between metrics (e.g., normalizing CPU 

values between 0 and 1), and feature engineering techniques are applied to extract meaningful 

statistical indicators like moving averages and rolling standard deviations. For unsupervised 

learning models like autoencoders, the data X is used to reconstruct system states, where the 

reconstruction error 
2

ˆX X−‖ ‖  can signal anomalies. On the other hand, supervised models 

such as Random Forests or Support Vector Machines (SVMs) rely on the labeled dataset to 

minimize classification errors by optimizing the loss function ( , ( ))i iL y f X , where ( )if X  is 

the predicted label. This internal dataset serves as a foundation for training and validating AI 

models aimed at identifying anomalies across the microservice architecture. The distribution of 

data is shown in Figure 2. 
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AI Models for Anomaly Detection 

In this section, we discuss the mathematical formulation and operational mechanics of several 

AI models applied to anomaly detection in microservice architectures. We will delve into both 

supervised and unsupervised learning methods, examining the mathematical principles that 

guide their anomaly detection capabilities. 

Supervised Learning Models 

Supervised learning approaches rely on labeled datasets where each instance is associated with 

a label that indicates whether it is normal or anomalous. The task is to train a model ( )f x  that 

maps input feature vectors 
dx  to a binary label {0,1}y , where 0 indicates normal 

operation and 1 denotes an anomaly. Supervised models such as Random Forest, Support 

Vector Machines (SVM) networks are utilized to detect anomalies. 

Random Forest 

Random Forest is an ensemble learning method that combines multiple decision trees to 

improve the robustness and accuracy of anomaly detection. A decision tree recursively 

partitions the feature space 
d

 by making splits based on feature values. Formally, the decision 

tree is a function ( )tf x  that maps an input vector x  to a predicted label ŷ . Given a training 

dataset 1{( , )}n

i i iy == xD , where d

i x  and {0,1}iy  , each decision tree t is trained on a 

bootstrapped subset of D . At each node in the tree, a split is chosen by maximizing the 

information gain I, which is defined as: 

 
| | | |

( , ) ( ) ( ) ( )
| | | |

L R
L R

S S
I S f H S H S H S

S S
= − −  (1)   

where S is the set of training examples at the current node, 
LS  and 

RS  are the sets of examples 

in the left and right child nodes after the split f, and ( )H S  is the entropy or Gini impurity of 

the set S. For binary classification, entropy ( )H S  is defined as: 

 
0 0 1 1( ) log( ) log( )H S p p p p= − −  (2)   

where 
0p  and 

1p  are the proportions of normal and anomalous instances in the set S. The 

Random Forest aggregates the predictions of T decision trees by majority voting: 

 {0,1}

1

ˆ arg max ( ( ) )
T

y t

t

y f y

=

= = xI  (3)   

where I  is the indicator function. The probability of an instance being anomalous is computed 

as the fraction of trees predicting 1y = . Random Forests are effective for anomaly detection in 

microservice architectures because they handle high-dimensional data and are resistant to 

overfitting. 

Support Vector Machines (SVM) 

SVM is a classification algorithm that finds the hyperplane that maximally separates the data 

points of two classes in the feature space. Let 1{( , )}n

i i iy == xD , where d

i x  and 

{ 1,1}iy  −  (with 1iy =  representing anomalies). The goal of SVM is to find a weight vector 
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dw  and a bias term b such that the hyperplane defined by 0b+ =w x
•  separates the data 

with the largest possible margin. The optimization problem for linear SVM is: 

 2

,

1
min

2
bw w‖ ‖  (4)   

 subject to ( ) 1i iy b i+  w x
•  (5)   

This can be solved using Lagrange multipliers, leading to the dual form of the optimization 

problem: 

 
1 1 1

1
max ( )

2

n n n

i i j i j i j

i i j

y y  
= = =

−  x x
•

 (6)   

 subject to 0 i C i    (7)   

 
1

0
n

i i

i

y
=

=  (8)   

where 
i  are the Lagrange multipliers and C is the regularization parameter. The final decision 

function is given by: 

 
1

( ) sign
n

i i i

i

f y b
=

 
= + 

 
x x x•

 (9)   

For non-linear separations, a kernel function ( , )i jK x x  is introduced, transforming the data 

into a higher-dimensional space where a hyperplane can be found: 

 
1

( ) sign ( , )
n

i i i

i

f y K b
=

 
= + 

 
x x x  (10)   

Common kernels include the Radial Basis Function (RBF) kernel, given by: 

 2( , ) exp( )i j i jK = − −x x x x‖ ‖  (11)   

where   is a hyperparameter that controls the width of the kernel. SVMs are particularly useful 

in detecting outliers or anomalies in microservice environments due to their ability to handle 

high-dimensional and non-linearly separable data. 

Unsupervised Learning Models 

Unsupervised learning techniques do not rely on labeled data. Instead, they aim to detect 

anomalies by learning the normal structure of the data and identifying deviations from it. Two 

prominent methods used in unsupervised anomaly detection are autoencoders and isolation 

forests. 

Autoencoders 

An autoencoder is a type of neural network designed to learn a compressed representation of 

input data. It consists of two parts: an encoder that maps the input x  to a lower-dimensional 

latent space z , and a decoder that reconstructs the input from z . The goal is to minimize the 

reconstruction error, defined as the difference between the original input and the 

reconstructed input. Given an input 
dx , the encoder maps x  to a latent representation 

kz  where k d : 
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 ( )e eW b= +z x  (12)   

The decoder reconstructs x  from z : 

 ( )d dW b= +x z  (13)   

The autoencoder is trained to minimize the reconstruction loss: 

 
2

1

1
( , )

n

ii

in =

= −x x x xL ‖ ‖  (14)   

During inference, instances with high reconstruction error are flagged as anomalies. This 

method is effective for detecting anomalies that differ significantly from the normal data 

distribution. 

Isolation Forest 

The isolation forest algorithm isolates anomalies by recursively partitioning the data. The key 

idea is that anomalies are more likely to be isolated by fewer random splits than normal 

instances. The isolation forest constructs random decision trees, where each split is chosen by 

randomly selecting a feature and a split value. The average path length of an instance across all 

trees serves as a measure of its "normalcy." Formally, for each instance 
dx , the algorithm 

computes the average path length ( )h x  across the forest. Anomalies are expected to have 

shorter average path lengths, and the anomaly score is defined as: 

 

( ( ))

( )( , ) 2

E h

c ns n
−

=

x

x  
(15)   

where ( ( ))E h x  is the expected path length of x , and ( )c n  is the average path length of an 

external node in a binary search tree of n instances. A score close to 1 indicates a high likelihood 

of the instance being anomalous. 

Time Series Models for Anomaly Detection 

Time series models are fundamental in detecting anomalies related to temporal patterns within 

microservice architectures. These models analyze and predict the future behavior of time-series 

data based on historical observations, identifying irregularities such as spikes in response time 

or gradual performance degradation. In this section, we will delve into three popular time-series 

models: ARIMA, LSTM, and Prophet, exploring their mathematical foundations and applications 

in anomaly detection within the context of microservices. 

ARIMA (AutoRegressive Integrated Moving Average) 

ARIMA is a widely used model for analyzing and forecasting time series data by incorporating 

three key elements: autoregression (AR), differencing (I), and moving average (MA). It is 

particularly effective in capturing linear temporal dependencies and trends in stationary data, 

making it ideal for anomaly detection related to gradual changes in microservice performance, 

such as response time deviations. Mathematically, the ARIMA model is expressed as follows: 

 1 1 2 2 1 1 2 2t t t p t p t t q t q ty c y y y     − − − − − −= + + ++ + + ++ +ò ò ò ò  (16)   
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In this equation, 
ty  represents the value at time t , c  is a constant, 1 2, , , p    are 

autoregressive coefficients, 1 2, , , q    are moving average parameters, and 
tò  represents 

the error term at time t. To detect anomalies, ARIMA models are trained on historical data to 

forecast future values. Anomalies are identified by computing residuals (differences between 

actual and predicted values). If these residuals exceed a predefined threshold, the event is 

flagged as an anomaly: 

 ˆ| |t t tr y y = −   (17)   

where   is the anomaly threshold determined based on historical variance. 

LSTM (Long Short-Term Memory Networks) 

LSTM, a variant of recurrent neural networks (RNNs), excels in learning long-term dependencies 

in sequential data, making it well-suited for detecting non-linear and complex anomalies in 

microservice architectures. Unlike ARIMA, which is linear in nature, LSTM can model non-linear 

patterns, including periodic spikes or gradually evolving anomalies. The key to LSTM’s 

effectiveness lies in its gating mechanisms. These gates—input, forget, and output—allow the 

model to control the flow of information over time, addressing the issue of vanishing gradients 

that traditional RNNs face. The fundamental equations governing an LSTM cell at time t are as 

follows: 

1. The forget gate controls which information from the previous state should be discarded: 

    1( [ , ] )t f t t ff W h x b −= +  (18)   

where 
tf  is the forget gate, 

1th −
 is the hidden state from the previous time step, and 

tx  is the 

input at time t. 

2. The input gate updates the cell state by determining what new information should be stored: 

 
1( [ , ] )t i t t ii W h x b −= +  (19)   

3. The candidate cell state computes the potential values for updating the cell: 

 
1tanh( [ , ] )t C t t CC W h x b−= +  (20)   

4. The cell state 
tC  is updated based on the forget and input gates: 

 
1t t t t tC f C i C−=  +   (21)   

5. Finally, the output gate determines the output for the current time step: 

 
1( [ , ] )t o t t oo W h x b −= +  (22)   

 tanh( )t t th o C=   (23)   

In practice, LSTM networks are trained on sequences of time-series data, predicting the next 

time step. Deviations between the predicted and actual values that exceed a threshold are 

classified as anomalies: 

 ˆAnomaly if | |t ty y −   (24)   
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LSTM is highly effective for non-linear time series, particularly in systems where temporal 

dependencies stretch across multiple time steps, such as microservices exhibiting periodic 

traffic bursts. 

 
Figure 3. Single LSTM cell [18] 

Prophet 

Prophet is a robust forecasting model developed by Facebook, specifically designed to handle 

time series data with strong seasonal components, trends, and special events such as holidays. 

Prophet’s additive model decomposes the time series into three main components: trend, 

seasonality, and events (e.g., holidays), making it highly effective for business-related 

applications with periodic patterns. Mathematically, the Prophet model is defined as: 

( ) ( ) ( ) ( ) ty t g t s t h t= + + +ò  (25)   

where ( )g t  represents the trend component, ( )s t  captures seasonality, ( )h t  accounts for 

holidays or events, 
tò  is the error term. The trend component in Prophet can be modeled either 

as a linear or logistic growth model. The piecewise linear trend function is expressed as: 

( ) ( ) 1( ) ( ( )) 1( )g t k a t t b d t t  = +    + +  −    (26)   

where   is the changepoint, and k, a, b, d are the slope parameters before and after the 

changepoint. The seasonality component is modeled using a Fourier series to capture periodic 

fluctuations: 

1

2 2
( ) cos sin

N

n n

n

nt nt
s t

T T

 
 

=

    
= +    

    
  (27)   

where T is the period (such as a year for annual seasonality), and 
n  and 

n  are the Fourier 

coefficients. Prophet’s holiday component captures the effect of specific events on the time 

series, such as holiday sales or traffic spikes: 

( ) 1( )h

h H

h t t H


=    (28)   

where 
h  represents the impact of the holiday h, and H is the set of holidays. For anomaly 

detection, Prophet forecasts the future values of the time series, and deviations between the 
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actual and forecasted values are monitored. Anomalies are flagged if the absolute difference 

between the actual value ( )y t  and the forecasted value ˆ( )y t  exceeds a specified threshold: 

ˆAnomaly if | ( ) ( ) |y t y t −   (29)   

Prophet is particularly suited for systems with strong seasonal or event-driven patterns, such as 

microservice platforms experiencing predictable traffic patterns during holidays or other special 

events. 

 
Figure 4. Confusion Matrix Breakdown by Algorithms 

Results 

In this section, we present the evaluation of seven different algorithms—Random Forest, SVM, 

Isolation Forest, LSTM, Autoencoder, Prophet, and ARIMA—on their ability to detect anomalies 

in a microservice architecture. The evaluation is based on four key metrics: Precision, Recall, F1-

Score, and Accuracy. The performance of these algorithms is assessed across multiple intervals 

of data, each representing 100 instances. The figures below provide detailed insights into how 

these algorithms perform over time in detecting anomalies from system metrics like CPU usage, 

memory consumption, network I/O, and latency. 
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Figure 4 highlights the breakdown of confusion matrix components (True Positives, True 

Negatives, False Positives, and False Negatives) for each algorithm across the intervals. The 

figure demonstrates that both Random Forest and LSTM show a clear upward trend in their 

ability to detect true positives as more data is processed. These two algorithms show a notable 

increase in detection accuracy in the later intervals (i.e., intervals 4 and 5). True negatives also 

remain consistently high across the board, particularly for Random Forest, LSTM, and Isolation 

Forest. However, other algorithms, such as SVM and ARIMA, struggle to maintain a high true 

positive rate, especially in the first few intervals, where the number of detected anomalies is 

lower. False positives remain relatively low for Random Forest, LSTM, and Isolation Forest, 

whereas SVM and ARIMA tend to produce more false positives as detection becomes less 

accurate in later intervals. False negatives, however, show a declining trend for Random Forest 

and LSTM as the intervals progress, indicating their increasing ability to catch true anomalies. 

 
Figure 5. Heatmap of Performance Metrics 

Figure 5 presents the heatmap of performance metrics (Precision, Recall, F1-Score, and 

Accuracy) for all algorithms across intervals. The color intensity corresponds to the 

performance, with darker shades indicating better performance. Random Forest and LSTM 

maintain consistently high scores across all metrics, particularly in terms of F1-Score and 

Accuracy, where they achieve near-perfect results by the later intervals. Isolation Forest also 

performs well, especially in accuracy, though its precision and recall fluctuate more compared 

to Random Forest and LSTM. The heatmap clearly illustrates that SVM and ARIMA have the 

weakest performance across most metrics, with their results being lighter in color, reflecting 
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their poor anomaly detection ability. Autoencoder and Prophet perform reasonably well but do 

not reach the performance levels of Random Forest, LSTM, and Isolation Forest. 

Figure 6 shows the density distribution of Precision, Recall, F1-Score, and Accuracy across all 

algorithms. The Accuracy curve (shown in black) is sharply skewed towards 1.0, indicating that 

most of the algorithms have high accuracy across the dataset. However, the precision, recall, 

and F1-Score distributions are more spread out, reflecting the challenges the algorithms face in 

maintaining high performance across all intervals. Precision and recall curves, in particular, 

show lower median values and broader variance, which suggests that some algorithms struggle 

with false positives and false negatives. Despite this, Random Forest and LSTM demonstrate 

more consistent results across all metrics, which explains their higher overall anomaly detection 

reliability. 

 
Figure 6. The density plot compares Precision, Recall, F1-Score, and Accuracy distributions across algorithms 

Figure 7 provides a stacked bar chart of anomaly detection by each algorithm across instances. 

The red crosses indicate instances where anomalies were detected by multiple algorithms. This 

figure shows that Random Forest, LSTM, and Isolation Forest are the most reliable in detecting 

anomalies, as their bars are consistently present across intervals. Overlapping anomalies 

detected by these algorithms further emphasize their robustness in identifying irregular 

patterns. On the other hand, algorithms like SVM, Prophet, and ARIMA have fewer instances of 

anomaly detection, especially in the middle and later intervals. This again suggests that these 

algorithms are less capable of adapting to more complex patterns in the data as the intervals 

progress. 

The results clearly indicate that Random Forest and LSTM are the top-performing algorithms in 

terms of anomaly detection in microservice architectures. Both algorithms excel in precision, 

recall, F1-Score, and accuracy, particularly in later intervals, where the detection of true 

positives becomes more challenging. Isolation Forest also proves to be a competitive 

alternative, though it shows some variability in precision and recall. SVM, ARIMA, and Prophet 

struggle to detect anomalies consistently, as evidenced by their lower overall performance 
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across the four key metrics. Overall, these findings suggest that Random Forest and LSTM are 

the most effective solutions for real-time anomaly detection in distributed microservice 

environments. 

 
Figure 7. Stacked Bar Chart of Anomaly Detection by Algorithms: Each bar represents an algorithm detecting 
anomalies at different intervals 

Conclusion 

In this study, we have explored the application of AI-driven techniques for anomaly detection 

in microservice architectures, focusing on both supervised and unsupervised models, as well as 

time series-based approaches. Through detailed experimentation with various AI models, 

including Random Forest, SVM, Autoencoders, Isolation Forest, ARIMA, LSTM, and Prophet, we 

have demonstrated the efficacy of these methods in detecting anomalies across diverse system 

metrics such as CPU usage, memory consumption, network I/O, and latency. Our results clearly 

indicate that Random Forest and LSTM outperform other models in terms of precision, recall, 

F1-score, and overall accuracy, particularly as the complexity and volume of data increase over 

time. 

Additionally, the unsupervised methods like Autoencoders and Isolation Forest proved highly 

effective in detecting rare anomalies without the need for labeled data, which is a significant 

advantage in large-scale microservice environments where labeling is often infeasible. Time-

series models such as ARIMA and LSTM demonstrated the ability to capture temporal 

dependencies in system metrics, further enhancing their anomaly detection capabilities. While 

ARIMA was more suited for linear and trend-based anomalies, LSTM excelled at identifying non-

linear patterns over long time periods. 

The research also highlighted the importance of combining multiple approaches in hybrid 

models to improve the robustness and accuracy of anomaly detection systems. By leveraging 

the strengths of supervised, unsupervised, and time-series techniques, hybrid models offer a 

comprehensive and scalable solution for real-time anomaly detection in microservices. 

However, several challenges remain, particularly with regard to scaling these AI techniques to 

handle the growing complexity and data volumes in distributed microservice environments. 

Future work will involve exploring more sophisticated hybrid models and extending the scope 

to multi-cloud or edge-based microservice architectures. 
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