

41
Quarterly Journal of Emerging Technologies and Innovations

Research Article: Quarterly Journal of Emerging Technologies and Innovations Volume: 05

Machine Learning Models for Anomaly Detection in

Microservices
Vijay Ramamoorthi
Independent Researcher

This work is licensed under a Creative Commons International License.

 Abstract
Microservice architectures have revolutionized the way distributed systems are designed,
offering enhanced scalability, flexibility, and resilience. However, the complexity of
managing numerous interconnected services poses significant challenges in ensuring
system reliability and performance, particularly when detecting anomalies in real-time.
Traditional monitoring tools often struggle with the high-dimensionality and dynamic
nature of microservices. This paper presents a comprehensive evaluation of AI-driven
techniques for anomaly detection in microservice environments, focusing on both
supervised and unsupervised learning models, as well as time-series forecasting methods.
Through an extensive analysis of Random Forest, Support Vector Machines (SVM),
Autoencoders, Isolation Forest, ARIMA, LSTM, and Prophet models, we demonstrate their
effectiveness in detecting performance anomalies across various system metrics such as
CPU usage, memory consumption, network I/O, and latency. The results indicate that LSTM
and Random Forest offer the highest precision and recall rates, while hybrid models
combining multiple techniques present a promising avenue for improving detection
accuracy. Our findings contribute to the growing body of research aimed at optimizing
anomaly detection frameworks for microservice architectures, highlighting the importance
of leveraging AI to address the evolving challenges of modern distributed systems.

Keywords: Microservice architectures, Anomaly detection, Machine learning, Time series models, AI-based

monitoring, Distributed systems.

Introduction
The rise of microservice architectures in software development has fundamentally transformed

the design and management of distributed systems, allowing for improved scalability, flexibility,

and resilience. Microservices break down monolithic applications into smaller, loosely coupled

services that can be independently deployed, developed, and scaled [1]. However, with this

architectural shift comes the complexity of managing and monitoring the health of numerous

interconnected services, where performance anomalies and failures can quickly propagate

across the system, leading to potential downtimes and system degradation. Consequently,

there is a growing need for advanced techniques to detect anomalies in these environments, as

traditional monitoring tools often fall short of capturing the intricate interactions between

services in real-time distributed settings. Anomaly detection in microservices is crucial for

maintaining the overall system health and reliability. Anomalies, which can stem from resource

overutilization, network bottlenecks, or service misconfigurations, can lead to cascading failures

if left unaddressed [2]. These anomalies may manifest as irregularities in system metrics such

42
Quarterly Journal of Emerging Technologies and Innovations

as CPU usage, memory consumption, latency, and network I/O. Detecting such irregularities in

real-time requires leveraging sophisticated AI-driven techniques capable of handling high-

dimensional data and identifying subtle, complex patterns that indicate deviations from normal

behavior [3].

The application of AI, particularly machine learning (ML) algorithms, has emerged as an

effective approach to anomaly detection in microservices due to its ability to learn from large

datasets and generalize over unseen data. Both supervised and unsupervised ML models have

been utilized to detect anomalies by analyzing system metrics and logs, with methods such as

Support Vector Machines (SVM), Random Forests, and autoencoders proving effective in

identifying abnormal system behavior [4]. Supervised learning models, such as SVM and

Random Forests, rely on labeled data to classify instances as normal or anomalous. However,

the challenge lies in acquiring labeled datasets for microservice environments, which often

require manual annotation and can be time-consuming [5]. On the other hand, unsupervised

learning techniques, such as autoencoders and Isolation Forests, offer promising solutions by

learning the underlying patterns of normal behavior without requiring labeled data. These

models identify anomalies by detecting deviations from the learned normal patterns, making

them well-suited for environments where anomalies are rare and labeling is infeasible.

Furthermore, time-series models like LSTM (Long Short-Term Memory) networks have been

employed to capture temporal dependencies in microservice metrics, such as request latency

and network traffic, improving the detection of anomalies over time [6]. Recent studies

highlight the importance of combining multiple AI techniques to improve the accuracy and

robustness of anomaly detection systems in microservice architectures [7]. Hybrid models that

blend supervised and unsupervised methods, along with time-series forecasting techniques,

offer a comprehensive approach to anomaly detection, ensuring both real-time responsiveness

and predictive capabilities. Despite significant advancements, challenges remain in scaling

these techniques to handle the growing complexity and volume of data generated by

microservice environments [8].

In this study, we aim to explore and compare the efficacy of various AI-based anomaly detection

techniques—ranging from supervised models like SVM and Random Forests to unsupervised

models such as autoencoders and Isolation Forests, as well as time-series models like LSTM and

ARIMA—in microservice architectures. By leveraging these methods, we seek to provide

insights into the advantages and limitations of each approach in detecting anomalies in real-

time, contributing to the growing body of research aimed at improving the reliability of

microservice-based systems.

Background and Related Work

Anomaly detection in microservice architectures has emerged as a critical area of research due

to the complexity of managing distributed systems. These architectures, which consist of

loosely coupled services, demand constant monitoring for anomalies that can degrade

performance, such as abnormal CPU utilization, memory consumption, and network latency.

Various approaches have been developed over the years to detect such anomalies, leveraging

AI and machine learning (ML) techniques to improve detection accuracy and system reliability.

Early work in anomaly detection often relied on threshold-based methods. These systems,

which flagged metrics exceeding predefined thresholds, were simple and widely adopted but

insufficient for microservice environments characterized by fluctuating loads and dependencies

43
Quarterly Journal of Emerging Technologies and Innovations

among services. Traditional monitoring tools struggled to capture complex interactions

between services and often produced high false-positive rates [3], [9].

AI and Machine Learning in Anomaly Detection

The introduction of AI and ML techniques has brought significant advancements to anomaly

detection. Machine learning models can learn from historical data and generalize patterns to

detect anomalies in real-time. Supervised learning methods, such as Support Vector Machines

(SVM) and Random Forests, are widely used to classify normal and anomalous behaviors in

microservices. Supervised learning approaches also face challenges with imbalanced datasets,

where normal instances far outweigh anomalous ones. Techniques such as oversampling and

class weighting have been applied to mitigate these issues [10], [11]. Despite these challenges,

supervised learning methods like SVM and Random Forests remain effective when sufficient

labeled data is available for training models [12]. In environments where labeled data is scarce,

unsupervised learning methods have gained popularity [13]–[15]. These approaches, such as

clustering and autoencoders, learn the underlying structure of normal data and flag deviations

as anomalies. Other unsupervised approaches include clustering methods, such as K-Means,

which group data into clusters and flag points that do not belong to any cluster as anomalies.

These methods are particularly useful in microservice architectures, where labeled data is often

unavailable, and anomalies are rare but critical to detect. Many metrics in microservice

architectures, such as request latencies and network I/O, are time-series data, requiring

specialized methods for anomaly detection. To address these limitations, deep learning-based

approaches like Long Short-Term Memory (LSTM) networks have been applied to capture both

short-term and long-term dependencies in microservice metrics [16]. LSTM models have proven

to be effective in modeling non-linear temporal dependencies, making them particularly useful

for detecting anomalies in time-series data from microservices [6].

Hybrid Approaches

Recent studies have emphasized the importance of hybrid models, which combine the strengths

of multiple machine learning techniques. For example, hybrid models that integrate

autoencoders with Random Forests or Isolation Forests have shown improved accuracy in

detecting both known and unknown anomalies. These models leverage the unsupervised

learning capabilities of autoencoders to detect unknown anomalies, while supervised models

handle known anomalies more effectively.

Hybrid time-series models combining ARIMA and LSTM have also been developed to detect

anomalies in microservice environments with seasonal patterns. These models apply ARIMA for

trend analysis and LSTM for capturing non-linear dependencies, offering a robust solution for

anomaly detection in complex microservice architectures. Despite advancements, several

challenges remain in anomaly detection for microservice architectures. One of the primary

challenges is scaling AI models to handle the large volumes of real-time data generated by

microservices. Techniques such as distributed learning and federated learning have been

explored to improve scalability, but further research is needed. Finally, hybrid models

combining supervised, unsupervised, and time-series techniques represent a promising

direction for improving the robustness of anomaly detection systems in microservices [17].

These models could adapt to the dynamic nature of microservices while providing real-time

anomaly detection with minimal false positives and negatives.

44
Quarterly Journal of Emerging Technologies and Innovations

Figure 1. Visualizing CPU Usage, Memory, Network I/O, and Latency with detected anomalies marked as red crosses

Methodology

In this section, we will explore various AI-based methods for anomaly detection, including both

supervised and unsupervised approaches. Each method will be accompanied by a detailed

mathematical foundation, which will explain how these techniques are used to monitor and

detect anomalies in microservices.

Dataset

We begin by collecting a rich dataset from microservice-based architectures, which includes

diverse system-level metrics such as CPU usage, memory consumption, network I/O, request

latencies and anomalies as shown in Figure 1. These metrics are captured from a distributed

system, where microservices interact with one another across containers or nodes. The dataset

can be either labeled (,)X Y for supervised learning, where
n dX  represents the matrix

45
Quarterly Journal of Emerging Technologies and Innovations

of system metrics with n instances and d features, and {0,1}nY  denotes the anomaly labels

for each instance; or unlabeled
n dX  for unsupervised learning. In our case, each feature

vector
iX in the dataset represents a collection of monitoring metrics, such as the CPU

utilization percentage
1ix , memory consumption

2ix , network I/O
3ix , and latency metrics

4 , ,i idx x , where 1 2[, , ,]i i i idX x x x=  • . These metrics capture the performance of

microservices under various loads. To handle the temporal nature of some data, such as latency

or request times, the dataset is further indexed by time intervals
1 2, , , Tt t t , where

itX

denotes the feature vector at time t.

Figure 2. Distributions of CPU Usage, Memory Consumption, Network I/O, and Latency

This multidimensional time series data can be structured as
n d TX   , where each slice

corresponds to a snapshot of the system state. The dataset undergoes preprocessing, including

data normalization, to account for scale differences between metrics (e.g., normalizing CPU

values between 0 and 1), and feature engineering techniques are applied to extract meaningful

statistical indicators like moving averages and rolling standard deviations. For unsupervised

learning models like autoencoders, the data X is used to reconstruct system states, where the

reconstruction error
2

ˆX X−‖ ‖ can signal anomalies. On the other hand, supervised models

such as Random Forests or Support Vector Machines (SVMs) rely on the labeled dataset to

minimize classification errors by optimizing the loss function (, ())i iL y f X , where ()if X is

the predicted label. This internal dataset serves as a foundation for training and validating AI

models aimed at identifying anomalies across the microservice architecture. The distribution of

data is shown in Figure 2.

46
Quarterly Journal of Emerging Technologies and Innovations

AI Models for Anomaly Detection

In this section, we discuss the mathematical formulation and operational mechanics of several

AI models applied to anomaly detection in microservice architectures. We will delve into both

supervised and unsupervised learning methods, examining the mathematical principles that

guide their anomaly detection capabilities.

Supervised Learning Models

Supervised learning approaches rely on labeled datasets where each instance is associated with

a label that indicates whether it is normal or anomalous. The task is to train a model ()f x that

maps input feature vectors
dx to a binary label {0,1}y , where 0 indicates normal

operation and 1 denotes an anomaly. Supervised models such as Random Forest, Support

Vector Machines (SVM) networks are utilized to detect anomalies.

Random Forest

Random Forest is an ensemble learning method that combines multiple decision trees to

improve the robustness and accuracy of anomaly detection. A decision tree recursively

partitions the feature space
d

 by making splits based on feature values. Formally, the decision

tree is a function ()tf x that maps an input vector x to a predicted label ŷ . Given a training

dataset 1{(,)}n

i i iy == xD , where d

i x and {0,1}iy  , each decision tree t is trained on a

bootstrapped subset of D . At each node in the tree, a split is chosen by maximizing the

information gain I, which is defined as:

| | | |

(,) () () ()
| | | |

L R
L R

S S
I S f H S H S H S

S S
= − − (1)

where S is the set of training examples at the current node,
LS and

RS are the sets of examples

in the left and right child nodes after the split f, and ()H S is the entropy or Gini impurity of

the set S. For binary classification, entropy ()H S is defined as:

0 0 1 1() log() log()H S p p p p= − − (2)

where
0p and

1p are the proportions of normal and anomalous instances in the set S. The

Random Forest aggregates the predictions of T decision trees by majority voting:

 {0,1}

1

ˆ arg max (())
T

y t

t

y f y

=

= = xI (3)

where I is the indicator function. The probability of an instance being anomalous is computed

as the fraction of trees predicting 1y = . Random Forests are effective for anomaly detection in

microservice architectures because they handle high-dimensional data and are resistant to

overfitting.

Support Vector Machines (SVM)

SVM is a classification algorithm that finds the hyperplane that maximally separates the data

points of two classes in the feature space. Let 1{(,)}n

i i iy == xD , where d

i x and

{ 1,1}iy  − (with 1iy = representing anomalies). The goal of SVM is to find a weight vector

47
Quarterly Journal of Emerging Technologies and Innovations

dw and a bias term b such that the hyperplane defined by 0b+ =w x
• separates the data

with the largest possible margin. The optimization problem for linear SVM is:

 2

,

1
min

2
bw w‖ ‖ (4)

 subject to () 1i iy b i+  w x
• (5)

This can be solved using Lagrange multipliers, leading to the dual form of the optimization

problem:

1 1 1

1
max ()

2

n n n

i i j i j i j

i i j

y y  
= = =

−  x x
•

 (6)

 subject to 0 i C i   (7)

1

0
n

i i

i

y
=

= (8)

where
i are the Lagrange multipliers and C is the regularization parameter. The final decision

function is given by:

1

() sign
n

i i i

i

f y b
=

 
= + 

 
x x x•

 (9)

For non-linear separations, a kernel function (,)i jK x x is introduced, transforming the data

into a higher-dimensional space where a hyperplane can be found:

1

() sign (,)
n

i i i

i

f y K b
=

 
= + 

 
x x x (10)

Common kernels include the Radial Basis Function (RBF) kernel, given by:

 2(,) exp()i j i jK = − −x x x x‖ ‖ (11)

where  is a hyperparameter that controls the width of the kernel. SVMs are particularly useful

in detecting outliers or anomalies in microservice environments due to their ability to handle

high-dimensional and non-linearly separable data.

Unsupervised Learning Models

Unsupervised learning techniques do not rely on labeled data. Instead, they aim to detect

anomalies by learning the normal structure of the data and identifying deviations from it. Two

prominent methods used in unsupervised anomaly detection are autoencoders and isolation

forests.

Autoencoders

An autoencoder is a type of neural network designed to learn a compressed representation of

input data. It consists of two parts: an encoder that maps the input x to a lower-dimensional

latent space z , and a decoder that reconstructs the input from z . The goal is to minimize the

reconstruction error, defined as the difference between the original input and the

reconstructed input. Given an input
dx , the encoder maps x to a latent representation

kz where k d :

48
Quarterly Journal of Emerging Technologies and Innovations

 ()e eW b= +z x (12)

The decoder reconstructs x from z :

 ()d dW b= +x z (13)

The autoencoder is trained to minimize the reconstruction loss:

2

1

1
(,)

n

ii

in =

= −x x x xL ‖ ‖ (14)

During inference, instances with high reconstruction error are flagged as anomalies. This

method is effective for detecting anomalies that differ significantly from the normal data

distribution.

Isolation Forest

The isolation forest algorithm isolates anomalies by recursively partitioning the data. The key

idea is that anomalies are more likely to be isolated by fewer random splits than normal

instances. The isolation forest constructs random decision trees, where each split is chosen by

randomly selecting a feature and a split value. The average path length of an instance across all

trees serves as a measure of its "normalcy." Formally, for each instance
dx , the algorithm

computes the average path length ()h x across the forest. Anomalies are expected to have

shorter average path lengths, and the anomaly score is defined as:

(())

()(,) 2

E h

c ns n
−

=

x

x
(15)

where (())E h x is the expected path length of x , and ()c n is the average path length of an

external node in a binary search tree of n instances. A score close to 1 indicates a high likelihood

of the instance being anomalous.

Time Series Models for Anomaly Detection

Time series models are fundamental in detecting anomalies related to temporal patterns within

microservice architectures. These models analyze and predict the future behavior of time-series

data based on historical observations, identifying irregularities such as spikes in response time

or gradual performance degradation. In this section, we will delve into three popular time-series

models: ARIMA, LSTM, and Prophet, exploring their mathematical foundations and applications

in anomaly detection within the context of microservices.

ARIMA (AutoRegressive Integrated Moving Average)

ARIMA is a widely used model for analyzing and forecasting time series data by incorporating

three key elements: autoregression (AR), differencing (I), and moving average (MA). It is

particularly effective in capturing linear temporal dependencies and trends in stationary data,

making it ideal for anomaly detection related to gradual changes in microservice performance,

such as response time deviations. Mathematically, the ARIMA model is expressed as follows:

 1 1 2 2 1 1 2 2t t t p t p t t q t q ty c y y y     − − − − − −= + + ++ + + ++ +ò ò ò ò (16)

49
Quarterly Journal of Emerging Technologies and Innovations

In this equation,
ty represents the value at time t , c is a constant, 1 2, , , p   are

autoregressive coefficients, 1 2, , , q   are moving average parameters, and
tò represents

the error term at time t. To detect anomalies, ARIMA models are trained on historical data to

forecast future values. Anomalies are identified by computing residuals (differences between

actual and predicted values). If these residuals exceed a predefined threshold, the event is

flagged as an anomaly:

 ˆ| |t t tr y y = −  (17)

where  is the anomaly threshold determined based on historical variance.

LSTM (Long Short-Term Memory Networks)

LSTM, a variant of recurrent neural networks (RNNs), excels in learning long-term dependencies

in sequential data, making it well-suited for detecting non-linear and complex anomalies in

microservice architectures. Unlike ARIMA, which is linear in nature, LSTM can model non-linear

patterns, including periodic spikes or gradually evolving anomalies. The key to LSTM’s

effectiveness lies in its gating mechanisms. These gates—input, forget, and output—allow the

model to control the flow of information over time, addressing the issue of vanishing gradients

that traditional RNNs face. The fundamental equations governing an LSTM cell at time t are as

follows:

1. The forget gate controls which information from the previous state should be discarded:

 1([,])t f t t ff W h x b −= + (18)

where
tf is the forget gate,

1th −
 is the hidden state from the previous time step, and

tx is the

input at time t.

2. The input gate updates the cell state by determining what new information should be stored:

1([,])t i t t ii W h x b −= + (19)

3. The candidate cell state computes the potential values for updating the cell:

1tanh([,])t C t t CC W h x b−= + (20)

4. The cell state
tC is updated based on the forget and input gates:

1t t t t tC f C i C−=  +  (21)

5. Finally, the output gate determines the output for the current time step:

1([,])t o t t oo W h x b −= + (22)

 tanh()t t th o C=  (23)

In practice, LSTM networks are trained on sequences of time-series data, predicting the next

time step. Deviations between the predicted and actual values that exceed a threshold are

classified as anomalies:

 ˆAnomaly if | |t ty y −  (24)

50
Quarterly Journal of Emerging Technologies and Innovations

LSTM is highly effective for non-linear time series, particularly in systems where temporal

dependencies stretch across multiple time steps, such as microservices exhibiting periodic

traffic bursts.

Figure 3. Single LSTM cell [18]

Prophet

Prophet is a robust forecasting model developed by Facebook, specifically designed to handle

time series data with strong seasonal components, trends, and special events such as holidays.

Prophet’s additive model decomposes the time series into three main components: trend,

seasonality, and events (e.g., holidays), making it highly effective for business-related

applications with periodic patterns. Mathematically, the Prophet model is defined as:

() () () () ty t g t s t h t= + + +ò (25)

where ()g t represents the trend component, ()s t captures seasonality, ()h t accounts for

holidays or events,
tò is the error term. The trend component in Prophet can be modeled either

as a linear or logistic growth model. The piecewise linear trend function is expressed as:

() () 1() (()) 1()g t k a t t b d t t  = +    + +  −   (26)

where  is the changepoint, and k, a, b, d are the slope parameters before and after the

changepoint. The seasonality component is modeled using a Fourier series to capture periodic

fluctuations:

1

2 2
() cos sin

N

n n

n

nt nt
s t

T T

 
 

=

    
= +    

    
 (27)

where T is the period (such as a year for annual seasonality), and
n and

n are the Fourier

coefficients. Prophet’s holiday component captures the effect of specific events on the time

series, such as holiday sales or traffic spikes:

() 1()h

h H

h t t H


=   (28)

where
h represents the impact of the holiday h, and H is the set of holidays. For anomaly

detection, Prophet forecasts the future values of the time series, and deviations between the

51
Quarterly Journal of Emerging Technologies and Innovations

actual and forecasted values are monitored. Anomalies are flagged if the absolute difference

between the actual value ()y t and the forecasted value ˆ()y t exceeds a specified threshold:

ˆAnomaly if | () () |y t y t −  (29)

Prophet is particularly suited for systems with strong seasonal or event-driven patterns, such as

microservice platforms experiencing predictable traffic patterns during holidays or other special

events.

Figure 4. Confusion Matrix Breakdown by Algorithms

Results

In this section, we present the evaluation of seven different algorithms—Random Forest, SVM,

Isolation Forest, LSTM, Autoencoder, Prophet, and ARIMA—on their ability to detect anomalies

in a microservice architecture. The evaluation is based on four key metrics: Precision, Recall, F1-

Score, and Accuracy. The performance of these algorithms is assessed across multiple intervals

of data, each representing 100 instances. The figures below provide detailed insights into how

these algorithms perform over time in detecting anomalies from system metrics like CPU usage,

memory consumption, network I/O, and latency.

52
Quarterly Journal of Emerging Technologies and Innovations

Figure 4 highlights the breakdown of confusion matrix components (True Positives, True

Negatives, False Positives, and False Negatives) for each algorithm across the intervals. The

figure demonstrates that both Random Forest and LSTM show a clear upward trend in their

ability to detect true positives as more data is processed. These two algorithms show a notable

increase in detection accuracy in the later intervals (i.e., intervals 4 and 5). True negatives also

remain consistently high across the board, particularly for Random Forest, LSTM, and Isolation

Forest. However, other algorithms, such as SVM and ARIMA, struggle to maintain a high true

positive rate, especially in the first few intervals, where the number of detected anomalies is

lower. False positives remain relatively low for Random Forest, LSTM, and Isolation Forest,

whereas SVM and ARIMA tend to produce more false positives as detection becomes less

accurate in later intervals. False negatives, however, show a declining trend for Random Forest

and LSTM as the intervals progress, indicating their increasing ability to catch true anomalies.

Figure 5. Heatmap of Performance Metrics

Figure 5 presents the heatmap of performance metrics (Precision, Recall, F1-Score, and

Accuracy) for all algorithms across intervals. The color intensity corresponds to the

performance, with darker shades indicating better performance. Random Forest and LSTM

maintain consistently high scores across all metrics, particularly in terms of F1-Score and

Accuracy, where they achieve near-perfect results by the later intervals. Isolation Forest also

performs well, especially in accuracy, though its precision and recall fluctuate more compared

to Random Forest and LSTM. The heatmap clearly illustrates that SVM and ARIMA have the

weakest performance across most metrics, with their results being lighter in color, reflecting

53
Quarterly Journal of Emerging Technologies and Innovations

their poor anomaly detection ability. Autoencoder and Prophet perform reasonably well but do

not reach the performance levels of Random Forest, LSTM, and Isolation Forest.

Figure 6 shows the density distribution of Precision, Recall, F1-Score, and Accuracy across all

algorithms. The Accuracy curve (shown in black) is sharply skewed towards 1.0, indicating that

most of the algorithms have high accuracy across the dataset. However, the precision, recall,

and F1-Score distributions are more spread out, reflecting the challenges the algorithms face in

maintaining high performance across all intervals. Precision and recall curves, in particular,

show lower median values and broader variance, which suggests that some algorithms struggle

with false positives and false negatives. Despite this, Random Forest and LSTM demonstrate

more consistent results across all metrics, which explains their higher overall anomaly detection

reliability.

Figure 6. The density plot compares Precision, Recall, F1-Score, and Accuracy distributions across algorithms

Figure 7 provides a stacked bar chart of anomaly detection by each algorithm across instances.

The red crosses indicate instances where anomalies were detected by multiple algorithms. This

figure shows that Random Forest, LSTM, and Isolation Forest are the most reliable in detecting

anomalies, as their bars are consistently present across intervals. Overlapping anomalies

detected by these algorithms further emphasize their robustness in identifying irregular

patterns. On the other hand, algorithms like SVM, Prophet, and ARIMA have fewer instances of

anomaly detection, especially in the middle and later intervals. This again suggests that these

algorithms are less capable of adapting to more complex patterns in the data as the intervals

progress.

The results clearly indicate that Random Forest and LSTM are the top-performing algorithms in

terms of anomaly detection in microservice architectures. Both algorithms excel in precision,

recall, F1-Score, and accuracy, particularly in later intervals, where the detection of true

positives becomes more challenging. Isolation Forest also proves to be a competitive

alternative, though it shows some variability in precision and recall. SVM, ARIMA, and Prophet

struggle to detect anomalies consistently, as evidenced by their lower overall performance

54
Quarterly Journal of Emerging Technologies and Innovations

across the four key metrics. Overall, these findings suggest that Random Forest and LSTM are

the most effective solutions for real-time anomaly detection in distributed microservice

environments.

Figure 7. Stacked Bar Chart of Anomaly Detection by Algorithms: Each bar represents an algorithm detecting
anomalies at different intervals

Conclusion

In this study, we have explored the application of AI-driven techniques for anomaly detection

in microservice architectures, focusing on both supervised and unsupervised models, as well as

time series-based approaches. Through detailed experimentation with various AI models,

including Random Forest, SVM, Autoencoders, Isolation Forest, ARIMA, LSTM, and Prophet, we

have demonstrated the efficacy of these methods in detecting anomalies across diverse system

metrics such as CPU usage, memory consumption, network I/O, and latency. Our results clearly

indicate that Random Forest and LSTM outperform other models in terms of precision, recall,

F1-score, and overall accuracy, particularly as the complexity and volume of data increase over

time.

Additionally, the unsupervised methods like Autoencoders and Isolation Forest proved highly

effective in detecting rare anomalies without the need for labeled data, which is a significant

advantage in large-scale microservice environments where labeling is often infeasible. Time-

series models such as ARIMA and LSTM demonstrated the ability to capture temporal

dependencies in system metrics, further enhancing their anomaly detection capabilities. While

ARIMA was more suited for linear and trend-based anomalies, LSTM excelled at identifying non-

linear patterns over long time periods.

The research also highlighted the importance of combining multiple approaches in hybrid

models to improve the robustness and accuracy of anomaly detection systems. By leveraging

the strengths of supervised, unsupervised, and time-series techniques, hybrid models offer a

comprehensive and scalable solution for real-time anomaly detection in microservices.

However, several challenges remain, particularly with regard to scaling these AI techniques to

handle the growing complexity and data volumes in distributed microservice environments.

Future work will involve exploring more sophisticated hybrid models and extending the scope

to multi-cloud or edge-based microservice architectures.

55
Quarterly Journal of Emerging Technologies and Innovations

REFERENCE

[1] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder, “Performance
evaluation of microservices architectures using containers,” in 2015 IEEE 14th
International Symposium on Network Computing and Applications, Cambridge, MA, USA,
2015.

[2] A. Goffi, A. Gorla, A. Mattavelli, and M. Pezzè, “Intrinsic redundancy for reliability and
beyond,” in Present and Ulterior Software Engineering, Cham: Springer International
Publishing, 2017, pp. 153–171.

[3] Q. Du, T. Xie, and Y. He, “Anomaly detection and diagnosis for container-based
microservices with performance monitoring,” in Algorithms and Architectures for Parallel
Processing, Cham: Springer International Publishing, 2018, pp. 560–572.

[4] S. Liu, “Business management system and information analysis platform for economic
innovation projects,” in 2018 International Conference on Intelligent Transportation, Big
Data & Smart City (ICITBS), Xiamen, China, 2018.

[5] W. Gong, B. Zhang, and C. Li, “Task assignment in mobile crowdsensing: Present and future
directions,” IEEE Netw., vol. 32, no. 4, pp. 100–107, Jul. 2018.

[6] S. Bernardini, C. Cianfrocca, M. Maioni, M. Pennacchini, D. Tartaglini, and L. Vollero, “A
mobile App for the remote monitoring and assistance of patients with Parkinson’s disease
and their caregivers,” Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 2018, pp. 2909–2912,
Jul. 2018.

[7] S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, and M. Couture, “Total ADS: Automated
Software Anomaly Detection System,” in 2014 IEEE 14th International Working Conference
on Source Code Analysis and Manipulation, 2014, pp. 83–88.

[8] T. Yarygina and A. H. Bagge, “Overcoming Security Challenges in Microservice
Architectures,” in 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE),
Bamberg, 2018.

[9] M.-O. Pahl and F.-X. Aubet, “All eyes on you: Distributed multi-dimensional IoT
microservice anomaly detection,” in 2018 14th International Conference on Network and
Service Management (CNSM), 2018, pp. 72–80.

[10] J. Shen, Y. Du, W. Wang, and X. Li, “Lazy random walks for superpixel segmentation,” IEEE
Trans. Image Process., vol. 23, no. 4, pp. 1451–1462, Apr. 2014.

[11] L. Grady, “Random walks for image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 11, pp. 1768–1783, Nov. 2006.

[12] B. Chen, C. Chen, J. Wang, and K. L. Butler-Purry, “Multi-time step service restoration for
advanced distribution systems and microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp.
6793–6805, Nov. 2018.

[13] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection and classification using
distributed tracing and deep learning,” in 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), Larnaca, Cyprus, 2019.

[14] A. Predescu, M. Mocanu, and C. Lupu, “A fault sensitivity analysis for anomaly detection in
water distribution systems using Machine Learning algorithms,” in 2018 IEEE 14th
International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, 2018.

[15] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi, “Real-time network anomaly detection
system using machine learning,” in 2015 11th International Conference on the Design of
Reliable Communication Networks (DRCN), Kansas City, MO, USA, 2015.

[16] J. Piironen and A. Vehtari, “Projection predictive model selection for Gaussian processes,”
in 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing
(MLSP), Vietri sul Mare, Salerno, Italy, 2016.

56
Quarterly Journal of Emerging Technologies and Innovations

[17] S. Yan, L. Zhang, and D. Liu, “An empirical study on optimization of training dataset in
harmfulness prediction of code clone using ensemble feature selection model,” in 2018
5th International Conference on Information and Communication Technologies for Disaster
Management (ICT-DM), Sendai, Japan, 2018.

[18] T. Zebin, M. Sperrin, N. Peek, and A. J. Casson, “Human activity recognition from inertial
sensor time-series using batch normalized deep LSTM recurrent networks,” in 2018 40th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2018, pp. 1–4.

