
Date of publication 11/01/2029, date of current version 11/01/2020.

VECTORAL manuscript Identifier 11.01-5/VECTORAL.2020.PUB

COMPARATIVE ANALYSIS OF HEURISTIC AND AI-BASED TASK
SCHEDULING ALGORITHMS IN FOG COMPUTING: EVALUATING
LATENCY, ENERGY EFFICIENCY, AND SCALABILITY IN
DYNAMIC, HETEROGENEOUS ENVIRONMENTS

KAUSHIK SATHUPADI1
1Staff Engineer, Google LLC, Sunnyvale, CA

Corresponding author: Sathupadi, K.

© Sathupadi, K., Author. Licensed under CC BY-NC-SA 4.0. You may: Share and adapt the material Under these terms:
• Give credit and indicate changes
• Only for non-commercial use
• Distribute adaptations under same license
• No additional restrictions

ABSTRACT Fog computing extends cloud capabilities to the edge of the network, offering a distributed
infrastructure to handle latency-sensitive, bandwidth-intensive applications. Task scheduling process in
fog computing determines how computational tasks are allocated to heterogeneous, resource-constrained
fog nodes. The dynamic and unpredictable nature of fog environments, characterized by stochastic task
arrivals and fluctuating resource availability, adds complexity to the scheduling process. This paper presents
a comparative study of heuristic and AI-based scheduling algorithms, focusing on their effectiveness in
managing task allocation under dynamic and heterogeneous conditions. Heuristic algorithms are known for
their computational efficiency and low complexity, making them suitable for resource-limited environments.
However, they often lack the adaptability required to handle the stochasticity of real-world fog networks.
AI-based scheduling algorithms using machine learning and optimization techniques can provide flexibility
and adaptability by learning from system dynamics and predicting future states. This study evaluates
these approaches using performance metrics such as latency, energy consumption, resource utilization, and
scalability. The findings reveal trade-offs between the computational overhead associated with AI-based
methods and their superior performance in dynamic, heterogeneous environments.

INDEX TERMS AI-based Scheduling, Fog Computing, Heuristic Algorithms, Resource Utilization,
Scalability, Task Scheduling

I. INTRODUCTION

Fog computing, positioned as an intermediary between cen-
tralized cloud systems and the rapidly expanding ecosystem
of Internet of Things (IoT) devices, is engineered to mitigate
the inherent deficiencies of cloud-based models (Bonomi
et al., 2012) (Chen et al., 2017). It achieves this by re-
locating computational, storage, and networking resources
closer to the data’s origin—on fog nodes—thus facilitat-
ing more efficient and responsive data processing. This is
crucial in scenarios demanding real-time interaction and
decision-making, such as in autonomous driving systems,
industrial automation, or healthcare applications, where de-
lays in processing could lead to catastrophic consequences
(Dastjerdi et al., 2016) (Iorga et al., 2018). The issue of
task scheduling in fog environments is exacerbated by the
sheer diversity of fog nodes, which may range from high-

performance servers to small embedded systems with limited
computational power and energy reserves. Unlike the rela-
tively homogeneous environment of a cloud data center, fog
nodes vary dramatically in terms of processing capabilities,
storage capacity, network bandwidth, and power availability.
This variability introduces substantial complexity into the
task scheduling process. Moreover, the dynamic nature of fog
networks—where devices might enter and leave the network
intermittently—only adds to the uncertainty, rendering tra-
ditional task scheduling paradigms largely ineffective. The
challenge lies in determining which fog node should execute
a given task, while optimizing performance metrics such as
latency, energy consumption, and resource utilization (Krae-
mer et al., 2017) (Mahmud et al., 2018).

Latency is a critical factor in fog computing, as one of
the primary motivations for shifting computational resources

VOLUME 5, 2020 23

https://orcid.org/0009-0007-1189-2293

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

closer to the edge is to reduce the time delay between data
generation and task execution. However, latency is not a
simple metric to optimize in a fog environment. Each node’s
physical proximity to the source of the data is only one vari-
able in a complex equation that includes network congestion,
node workload, and the inherent processing speed of the fog
node itself (Yi et al., 2015). Some nodes might be closer
geographically but are bottlenecked by limited bandwidth
or are already overwhelmed by existing tasks. Furthermore,
latency is impacted by the stochastic nature of task arrivals,
which makes it nearly impossible to predict how many tasks
will arrive at a given time and where. This unpredictability
ensures that any static scheduling model will inevitably fall
short, as it cannot account for the fluid and fluctuating nature
of fog networks.

Energy consumption further complicates the scheduling
process. Many fog nodes, especially those at the edge of
the network, are severely constrained in terms of energy
availability. These nodes may rely on battery power or other
limited energy sources, making it essential to conserve en-
ergy wherever possible. However, energy efficiency comes at
a price. Running tasks on lower-powered devices might con-
serve energy, but it also extends the time required for task ex-
ecution, thus increasing latency. Conversely, offloading tasks
to higher-powered nodes might reduce latency but at the cost
of rapidly depleting energy reserves. This tension between
conserving energy and minimizing latency creates a schedul-
ing dilemma with no simple or universally optimal solution.
The variability in energy consumption between nodes, due to
differences in hardware architecture and operational modes
(e.g., low-power states versus full-power states), only serves
to complicate this already delicate balance.

Resource utilization, yet another pressing issue, becomes
a critical concern in a fog environment where resources are
finite and often statically allocated. Unlike cloud environ-
ments, where resources can be dynamically provisioned and
scaled, fog nodes have hard limits on their computational
and storage capacities. This necessitates a careful allocation
of tasks to avoid resource contention, which can lead to
task delays or failures. Overloading a fog node with too
many tasks can degrade its performance significantly, while
under-utilization of nodes results in wasted resources. The
problem is further amplified by the unpredictable nature of
task arrivals, as sudden bursts of tasks can overwhelm nodes,
leading to bottlenecks and a degradation of overall network
performance. The heterogeneity of the nodes only makes this
balancing act more difficult, as each node’s capabilities must
be considered individually, rather than relying on a one-size-
fits-all scheduling strategy.

Moreover, the fog environment is inherently decentralized,
which presents profound challenges in coordinating task
scheduling. Unlike the cloud, where a central authority can
oversee and manage resource allocation, fog nodes often
operate autonomously, without centralized control. This de-
centralization leads to inefficiencies (Dastjerdi et al., 2016),
as fog nodes might make independent scheduling decisions

without awareness of the global state of the network. A node
might accept a task based on its local conditions, unaware
that a nearby node is better suited to handle the task. The
lack of coordination can also result in suboptimal resource
allocation, with some nodes becoming overloaded while oth-
ers remain idle. The decentralized nature of fog computing
introduces a layer of complexity that simply does not exist in
cloud environments, as there is no single point of control to
manage and optimize the distribution of tasks.

The scheduling problem in fog computing is further com-
plicated by the security and privacy concerns that arise when
distributing tasks across a decentralized network of nodes. In
applications where sensitive data is involved, such as health-
care or financial services, the task scheduling algorithm must
account not only for computational and energy constraints
but also for the security of the nodes. Different fog nodes may
have varying levels of security, and scheduling sensitive tasks
on nodes with inadequate security measures could expose the
data to unauthorized access or manipulation. Additionally,
the decentralized nature of fog computing makes it difficult
to enforce uniform security policies across all nodes, as each
node might be subject to different regulatory requirements or
operate under different trust levels. The need to balance se-
curity considerations with performance and energy efficiency
adds yet another layer of complexity to the scheduling prob-
lem, creating trade-offs that are difficult, if not impossible, to
resolve in a satisfactory manner.

Furthermore, task scheduling in fog computing is not just
a static problem but one that evolves continuously as the net-
work changes over time (Arunarani et al., 2019). Fog nodes
can enter and leave the network, either due to mobility, fail-
ure, or energy depletion, and the network topology itself may
shift as nodes connect and disconnect. This dynamic nature
means that any scheduling solution must be highly adaptable
and capable of making real-time decisions under conditions
of uncertainty. However, developing such adaptable schedul-
ing algorithms is a daunting task, as it requires real-time
monitoring of network conditions, predictive modeling of
task arrivals, and the ability to make decisions on incomplete
or rapidly changing information. The unpredictability of both
task arrivals and network conditions makes it extremely dif-
ficult to develop a scheduling algorithm that can consistently
optimize for all performance metrics. The inherent volatility
of the fog network, combined with the diversity of nodes and
the stochastic nature of tasks, creates an intractable problem
with no clear solution.

Despite the growing interest in fog computing, the task
scheduling problem remains a significant barrier to its
widespread adoption. The decentralized, heterogeneous, and
dynamic nature of fog networks creates a perfect storm of
challenges that cannot be easily addressed by traditional
scheduling methods. The variability in node capabilities, the
unpredictability of task arrivals, the tension between latency
and energy consumption, and the need for secure task allo-
cation all contribute to a problem that is both complex and
multidimensional. Furthermore, the decentralized nature of

24 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

fog networks makes it difficult to coordinate scheduling de-
cisions across nodes, leading to inefficiencies and suboptimal
performance. As fog computing continues to evolve, the task
scheduling problem will remain a critical challenge that must
be addressed before the full potential of this paradigm can
be realized. Traditional heuristic algorithms, while computa-
tionally efficient, are often unable to adapt to these changing
conditions, making AI-based approaches, which can learn
from and respond to environmental changes, a promising
alternative (Atabakhsh, 1991).

This paper conducts a comparative study of heuristic and
AI-based scheduling algorithms in fog computing. We focus
on the effectiveness of these algorithms in dynamic, hetero-
geneous environments with stochastic task arrivals. The main
objective is to evaluate the performance of these algorithms
in terms of key metrics, such as task completion time (la-
tency), energy efficiency, load balancing, and scalability.

A. BACKGROUND ON FOG COMPUTING AND
SCHEDULING CHALLENGES
Fog Computing Architecture Fog computing introduces an
intermediate layer between cloud services and IoT devices,
distributing computational resources across a wide array of
devices, including routers, gateways, and micro-data centers
located near the network’s edge. This architecture is inher-
ently heterogeneous, with fog nodes differing significantly
in computational power, memory, network bandwidth, and
energy resources. Tasks in fog computing environments can
range from lightweight operations, such as data filtering and
aggregation, to more complex computations like real-time
analytics.

The dynamic nature of fog environments is another critical
challenge. Fog nodes may experience varying workloads
over time, with task demands fluctuating due to factors
such as user activity, sensor data influx, and environmental
conditions. Moreover, stochastic task arrivals mean that tasks
arrive unpredictably, with no prior knowledge of their arrival
time, size, or resource requirements. These characteristics
necessitate sophisticated scheduling algorithms capable of
making real-time decisions under uncertainty.

Scheduling Objectives and Challenges in Fog Computing
The primary objectives of scheduling in fog computing are
to minimize task completion time (latency), reduce energy
consumption, maximize resource utilization, and ensure scal-
ability. Achieving these objectives is challenging due to the
following factors:

Heterogeneous Resources: Fog nodes differ significantly
in their processing power, memory, and communication ca-
pabilities, making it difficult to develop a unified scheduling
strategy that can effectively utilize all nodes.

Latency Sensitivity: Many fog applications, such as au-
tonomous vehicles and industrial IoT systems, require ultra-
low latency to function effectively. Scheduling algorithms
must prioritize tasks based on their latency sensitivity while
ensuring that other system performance metrics are not de-
graded.

Energy Constraints: Many fog nodes, those deployed on
IoT devices or edge routers, operate under limited energy
budgets. Scheduling algorithms must optimize for energy
consumption to extend the lifetime of these nodes while still
meeting performance requirements.

Stochastic Task Arrivals: Task arrivals in fog environments
are typically random, with unpredictable sizes and deadlines.
This stochasticity increases the complexity of scheduling, as
the system must make decisions without prior knowledge of
future tasks or system states.

Scalability: As the number of devices and applications uti-
lizing the fog network grows, the scheduling algorithm must
scale efficiently, handling larger workloads and more fog
nodes without a significant increase in scheduling overhead.

II. COMPARATIVE ANALYSIS OF HEURISTIC AND
AI-BASED SCHEDULING ALGORITHMS
A. HEURISTIC SCHEDULING ALGORITHMS
The First-Come-First-Served (FCFS) scheduling algorithm is
one of the simplest and most straightforward methods for al-
locating resources in fog and cloud computing environments.
In FCFS, tasks are processed strictly in the order they arrive.
This approach has the distinct advantage of simplicity and
ease of implementation, requiring minimal computational
overhead to track the sequence of task arrivals. The algo-
rithm’s intuitive design allows for quick task assignments
without the need for complex calculations, which can be
beneficial in environments where computational resources
are scarce or where the goal is to minimize latency in task
assignment.

Task Arrival Time Node Assigned Execution Time
T1 0 Node 1 5
T2 1 Node 2 3
T3 2 Node 1 6
T4 3 Node 2 4
T5 4 Node 1 7
T6 5 Node 2 5

TABLE 1. Illustration of FCFS scheduling algorithm. Tasks are assigned to
nodes based on their arrival times, without consideration of task priority,
system load, or node heterogeneity.

However, FCFS suffers from several critical drawbacks,
in dynamic and heterogeneous environments such as fog
computing. One major limitation is the algorithm’s failure to
account for task priorities or the heterogeneity of the system’s
nodes. Tasks with higher priority, such as time-sensitive tasks
in real-time applications, may be delayed significantly if they
are placed behind lower-priority tasks in the queue. This can
lead to inefficiencies in systems where certain tasks require
immediate attention, such as in healthcare or emergency
response applications, where a delay could be catastrophic.

Moreover, the FCFS method does not account for node
heterogeneity, a common characteristic of fog computing
environments. Fog nodes can vary significantly in terms of
processing power, memory capacity, and network bandwidth.
By scheduling tasks in the order they arrive, FCFS may

VOLUME 5, 2020 25

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

assign resource-intensive tasks to weaker nodes, while more
capable nodes remain idle or underutilized. This leads to
inefficient resource utilization, with some nodes becoming
overloaded while others remain underloaded. The overall
system performance degrades as a result, with tasks taking
longer to execute, leading to higher task response times and
decreased throughput.

Another significant issue with FCFS is its lack of adapt-
ability to system load. In dynamic environments where the
system load fluctuates rapidly, such as in fog computing,
FCFS is unable to make intelligent scheduling decisions
based on current load conditions. This often results in scenar-
ios where the system becomes overloaded, as the algorithm
continues to assign tasks without considering the current
resource availability or load distribution across nodes. Conse-
quently, tasks may experience longer wait times in the queue,
and the overall system throughput can decrease substantially.

Figure ?? illustrates the operation of the FCFS scheduling
algorithm. As shown, tasks are scheduled in the order they
arrive, with no consideration given to task priority, system
load, or node heterogeneity. While computationally inexpen-
sive, this method can lead to significant performance issues
in dynamic and heterogeneous fog computing environments.

The Round Robin (RR) scheduling algorithm represents
an alternative to FCFS that attempts to distribute tasks more
evenly across available nodes. In RR, tasks are assigned to
fog nodes in a cyclical manner, ensuring that each node is
allocated a roughly equal number of tasks. This method pro-
motes fairness in resource allocation by preventing any single
node from becoming overwhelmed with tasks, as each node is
given its turn in a round-robin fashion. The simplicity of RR
also makes it attractive in environments where computational
overhead needs to be minimized, and its deterministic nature
ensures predictability in task scheduling (El-Rewini et al.,
1994).

Task Arrival Time Node Assigned
(Round 1)

Node Assigned
(Round 2)

T1 0 Node 1 Node 2
T2 1 Node 2 Node 3
T3 2 Node 3 Node 1
T4 3 Node 1 Node 2
T5 4 Node 2 Node 3
T6 5 Node 3 Node 1

TABLE 2. Illustration of Round Robin scheduling algorithm. Tasks are
assigned cyclically to nodes without considering node capabilities or task
priorities.

Despite its advantages, RR also suffers from several short-
comings, in environments where nodes have varying capa-
bilities. One of the main weaknesses of RR is its failure to
account for the heterogeneity of fog nodes. Since RR blindly
assigns tasks to nodes in a circular manner, it ignores the fact
that different nodes may have different processing capacities.
More powerful nodes may end up being underutilized, as
they receive the same number of tasks as weaker nodes.
Similarly, weaker nodes may become overloaded, as they are

assigned tasks that they are ill-equipped to handle. This lack
of awareness of node capabilities can lead to inefficient re-
source utilization, with some tasks taking longer to complete
than they would under a more adaptive scheduling algorithm.

Another drawback of RR is its lack of consideration for
task priority and resource requirements. Tasks with urgent
deadlines or higher resource demands are treated the same
as less urgent tasks, potentially leading to delays in the
execution of time-critical applications. This can be especially
problematic in fog computing environments, where tasks
may have varying degrees of importance and urgency.

Figure ?? demonstrates the operation of the RR algo-
rithm. Tasks are distributed evenly across nodes in a circu-
lar manner, without consideration for node capabilities or
task priorities. While this method ensures a balanced load
distribution in homogeneous environments, it may result in
underutilization or overloading of nodes in heterogeneous
fog environments, ultimately affecting system performance.

Greedy algorithms represent another class of scheduling
strategies, which aim to make locally optimal decisions at
each step of the scheduling process. For instance, a task may
be assigned to the node with the lowest current load or the
highest available processing power. Greedy algorithms are
attractive due to their simplicity and speed, as they make
decisions based solely on the current system state without
needing to account for future tasks or system conditions.
This makes them effective in static environments, where task
arrival patterns and resource availability remain relatively
constant.

However, in dynamic fog computing environments, greedy
algorithms often struggle to achieve globally optimal per-
formance. Since these algorithms focus only on immediate
gains, they may fail to account for long-term system states or
future task arrivals. This can lead to suboptimal scheduling
decisions, where a task is assigned to a node that appears
to be the best option at the moment but may not be able to
handle future workloads efficiently. Over time, this can result
in system-wide inefficiencies, as tasks pile up on certain
nodes while others remain underutilized.

Furthermore, greedy algorithms often struggle with the
stochastic nature of task arrivals in fog computing. In such
environments, task arrival rates can fluctuate significantly,
and resources may become available or unavailable at any
time. Since greedy algorithms base their decisions solely on
the current system state, they are unable to anticipate these
changes, leading to poor performance in dynamic environ-
ments.

Figure ?? illustrates how greedy algorithms allocate tasks
to the least-loaded resource. While this strategy can lead to
fast scheduling decisions in static environments, it may result
in suboptimal long-term performance in dynamic systems
where future tasks and demands are unpredictable.

In addition to FCFS, RR, and greedy algorithms, Min-
Min and Max-Min heuristics are also commonly used for
scheduling tasks in fog computing environments. The Min-
Min heuristic operates by assigning the smallest task to

26 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

Task Arrival Time Node Load Node Assigned (Greedy) Execution Time
T1 0 Node 1: 10%, Node 2: 20%, Node 3: 15% Node 1 5
T2 1 Node 1: 30%, Node 2: 20%, Node 3: 15% Node 3 4
T3 2 Node 1: 35%, Node 2: 20%, Node 3: 40% Node 2 6
T4 3 Node 1: 35%, Node 2: 45%, Node 3: 40% Node 1 3
T5 4 Node 1: 60%, Node 2: 45%, Node 3: 40% Node 3 7

TABLE 3. Illustration of Greedy scheduling algorithm. Tasks are assigned to the least-loaded node at the time of arrival, without considering future tasks or
long-term system load distribution.

the node that can complete it the fastest, with the goal
of minimizing the overall execution time for smaller tasks.
This method can be effective in environments where smaller
tasks are more common, as it reduces their waiting time and
ensures that they are processed quickly. However, one of the
main drawbacks of Min-Min is that it can lead to significant
delays for larger tasks, as they are placed behind smaller tasks
in the queue.

The Max-Min heuristic, on the other hand, prioritizes
larger tasks. By assigning the largest task to the node that
can complete it the fastest, Max-Min ensures that larger tasks
are not delayed indefinitely by smaller tasks. This method
is suited for heterogeneous environments, where nodes may
have varying capabilities and tasks may have differing re-
source requirements. However, Max-Min can also lead to
inefficiencies in cases where the system is dominated by
smaller tasks, as these tasks may end up waiting longer than
necessary.

Figure ?? compares the Min-Min and Max-Min algo-
rithms. Min-Min schedules smaller tasks first, reducing their
waiting time at the cost of delaying larger tasks. In contrast,
Max-Min prioritizes larger tasks, ensuring that they do not
dominate system resources and that smaller tasks are not de-
layed unnecessarily. Heuristic algorithms are typically based
on static rules, which means they cannot adapt to changes in
task arrival rates, node availability, or system load. This lack
of adaptability makes them less suitable for fog computing
environments, where conditions are constantly changing.

B. AI-BASED SCHEDULING ALGORITHMS
AI-based scheduling algorithms apply machine learning
(ML) techniques to model the complex, dynamic nature of
fog computing environments. These algorithms can learn
from historical data, predict future system states, and adapt
their scheduling decisions accordingly. Common AI-based
scheduling approaches are discussed in this section.

1) Reinforcement Learning (RL)
Reinforcement learning (RL) is increasingly becoming a
critical approach in optimizing task scheduling in fog com-
puting environments, where computation, storage, and net-
work resources are distributed across multiple layers. Fog
computing, which is characterized by its ability to bring
cloud services closer to end users, necessitates efficient
task scheduling to meet the demands of low-latency, high-
throughput applications, in the context of Internet of Things

(IoT) devices. Traditional scheduling algorithms, which rely
on predefined heuristics or static optimization strategies,
often struggle to cope with the dynamic and unpredictable
nature of fog environments. This is where RL offers a more
robust and adaptive solution by learning from the environ-
ment and continuously refining scheduling decisions over
time (Noronha & Sarma, 1991).

In reinforcement learning, an agent interacts with the envi-
ronment, learning to take actions that maximize cumulative
rewards over time. This process is typically modeled as a
Markov Decision Process (MDP), where the environment’s
state changes in response to the agent’s actions, and the
agent receives feedback in the form of rewards. The goal
of the agent is to learn a policy that maps states to actions,
such that the expected long-term reward is maximized. In the
context of fog computing, the environment consists of a dis-
tributed network of fog nodes with varying resource capac-
ities, network conditions, and workload demands. The state
of the environment includes information about the available
resources, such as the load on each fog node, their energy
consumption levels, and the incoming tasks that need to be
scheduled. The actions represent different task scheduling
decisions, which may involve allocating a specific task to a
particular fog node, delaying a task, or offloading tasks to the
cloud when local resources are insufficient.

One of the most prominent algorithms used in RL for
task scheduling is Q-learning, a model-free method that aims
to learn the optimal action-value function. The action-value
function, denoted as Q(s, a), estimates the expected cumula-
tive reward for taking action a in state s and following the
optimal policy thereafter. The Q-learning algorithm updates
the Q-values based on the Bellman equation, which expresses
the value of a state-action pair in terms of the immediate
reward and the discounted value of the best future action. In
fog computing, the Q-learning process begins by initializing
a Q-table, where each entry corresponds to a state-action pair.
The agent then explores the environment by selecting actions
according to an exploration-exploitation strategy. Initially,
the agent may choose random actions to explore the space
of possible task scheduling decisions, but as it gathers more
information about the system’s behavior, it begins to favor
actions that yield higher Q-values.

Each time the agent takes an action, such as assigning a
task to a fog node, the environment transitions to a new state
based on the system’s response to that decision. The agent
then receives a reward, which is designed to reflect the quality

VOLUME 5, 2020 27

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

Task Arrival Time Task Size Node Assigned (Min-Min) Node Assigned (Max-Min) Execution Time
T1 0 Small Node 2 Node 1 3
T2 1 Medium Node 3 Node 2 6
T3 2 Large Node 1 Node 3 8
T4 3 Small Node 2 Node 1 2
T5 4 Large Node 3 Node 3 7

TABLE 4. Comparison of Min-Min and Max-Min heuristics. Min-Min assigns smaller tasks to nodes that can complete them the fastest, prioritizing fast execution of
small tasks. Max-Min, on the other hand, assigns larger tasks to the fastest nodes, ensuring that they are not delayed by smaller tasks.

T1 T2 T3 T4 T5

Exec T1 Exec T2 Exec T3 Exec T4 Exec T5

Tasks executed in First-Come-First-Served (FCFS) order

FIGURE 1. First-Come-First-Served (FCFS): Tasks are scheduled in the order they arrive. This method does not consider task priority, system state, or resource
availability. While computationally inexpensive, it may lead to poor performance in dynamic environments.

Node 1 Node 2 Node 3

T1 T2 T3T4 T5 T6

Tasks distributed evenly across nodes in a circular (Round Robin) manner.

FIGURE 2. Round Robin (RR): Tasks are evenly distributed across available nodes in a circular manner. This scheduling method balances load but may result in
underutilization or overloading due to the disregard of node capabilities and resource requirements.

Node 1

Load: 40%

Node 2

Load: 20%

Node 3

Load: 80%

T1 (allocated to Node 2)
T2 (allocated to Node 2)

T3 (allocated to Node 1)

Tasks are allocated to the least-loaded resource, following a greedy scheduling strategy.

FIGURE 3. Greedy Algorithms: Tasks are allocated based on the immediate best available resource, such as the least-loaded node. While fast, greedy algorithms
fail to account for future tasks or demands, leading to potential suboptimal long-term performance.

28 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

Min-Min Algorithm

Node 1
T1 (small)

Node 2
T2 (medium)

Node 3
T3 (large)

Min-Min assigns the smallest tasks first
to the nodes that can complete them the
quickest. While this reduces waiting time
for small tasks, it can significantly delay
the completion of larger ones.

Max-Min Algorithm

Node 1
T1 (small)

Node 2
T2 (medium)

Node 3
T3 (large)

Max-Min assigns the largest tasks first,
ensuring that large tasks do not dominate
resources, and smaller tasks are not de-
layed unnecessarily. This method is suited
for heterogeneous environments.

FIGURE 4. Min-Min and Max-Min Algorithms: Min-Min schedules smaller tasks first, reducing waiting time for small tasks at the cost of delaying larger tasks.
Max-Min prioritizes larger tasks, ensuring they are handled without significantly delaying smaller tasks, which is better suited for heterogeneous environments.

TABLE 5. FCFS Scheduling Algorithm

Aspect Details
Advantages Simple to implement, minimal computational

overhead, no complex calculations required
Disadvantages Ignores task priority, node heterogeneity, and

system load; leads to inefficient resource utiliza-
tion

Environment
Suitability

Suitable for static, non-real-time environments
with homogeneous nodes

TABLE 6. Round Robin (RR) Scheduling Algorithm

Aspect Details
Advantages Ensures fair distribution of tasks across nodes,

simple and predictable
Disadvantages Ignores node capabilities, task priority, and re-

source demands; can overload weaker nodes
Environment
Suitability

Suitable for homogeneous environments where
fairness in task distribution is prioritized

TABLE 7. Greedy Scheduling Algorithm

Aspect Details
Advantages Makes fast, locally optimal decisions based on

current system state
Disadvantages Poor long-term performance, especially in dy-

namic environments; does not account for future
system conditions

Environment
Suitability

Effective in static systems with stable task ar-
rivals and node capabilities

TABLE 8. Min-Min Heuristic Scheduling Algorithm

Aspect Details
Advantages Minimizes waiting time for smaller tasks, reduc-

ing overall task execution time for short tasks
Disadvantages Larger tasks may experience significant delays;

not adaptable to fluctuating system loads
Environment Suitability Best suited for environments dominated by small

tasks

of the scheduling decision in terms of system performance
metrics. In fog computing, rewards are typically based on
key objectives like minimizing task execution latency, reduc-

TABLE 9. Max-Min Heuristic Scheduling Algorithm

Aspect Details
Advantages Prioritizes larger tasks, preventing them from

dominating system resources
Disadvantages Smaller tasks may experience unnecessary delays

if system is not balanced
Environment
Suitability

Ideal for heterogeneous environments with tasks
of varying sizes and resource demands

ing energy consumption, and balancing the load across fog
nodes. For example, an action that results in low-latency task
execution may receive a high reward, while an action that
leads to task delays or node overloads is penalized. The Q-
values are updated after each action, gradually improving the
agent’s understanding of which scheduling decisions lead to
the best overall performance.

The ability of RL to adapt over time is one of its main
strengths in fog computing environments, which are inher-
ently dynamic. Task arrival rates, resource availability, and
network conditions can fluctuate unpredictably, making static
scheduling approaches inefficient. RL agents, on the other
hand, continuously learn from real-time feedback and adjust
their scheduling strategies accordingly. This makes RL well-
suited for environments with stochastic task arrivals and
varying resource demands, as it allows the system to optimize
scheduling decisions based on the current state of the system
rather than relying on predetermined rules or assumptions.

In addition to its adaptive nature, reinforcement learning
does not require a model of the environment. This is a sig-
nificant advantage in fog computing, where the complexity
of the system makes it difficult to construct accurate models
of resource availability, network conditions, and workload
patterns. Unlike model-based approaches, which depend on
precise system models to predict future states, RL operates
in a model-free manner, learning directly from interaction
with the environment. This allows RL-based task scheduling
algorithms to be applied in a wide range of fog computing
scenarios, even when the underlying system dynamics are not
fully understood or are too complex to be modeled explicitly.

VOLUME 5, 2020 29

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

RL allows for the incorporation of multiple performance
metrics into the reward function, enabling multi-objective op-
timization in task scheduling. Fog computing systems often
need to balance conflicting objectives, such as minimizing
task completion time while reducing energy consumption
or maintaining high throughput while avoiding overloading
specific nodes. By carefully designing the reward function, it
is possible to guide the RL agent towards policies that make
trade-offs between these different objectives. For instance,
the reward function could penalize actions that lead to high
energy consumption while rewarding those that improve load
balancing across nodes, thus encouraging the agent to find a
balance between energy efficiency and system performance.

In fog computing, task scheduling decisions often need to
be made on the fly as tasks arrive unpredictably, and the sys-
tem’s state changes rapidly. RL-based scheduling algorithms
can make these real-time decisions by relying on the learned
Q-values, which provide an estimate of the long-term benefit
of each possible action. This allows the RL agent to make
informed scheduling decisions that account not only for the
immediate effects of an action but also for its impact on future
system performance.

The flexibility of reinforcement learning also extends to
the ability to scale across various fog computing architec-
tures, from small-scale local networks to large-scale dis-
tributed systems with numerous fog nodes and heterogeneous
resources. As fog computing systems grow in size and com-
plexity, the number of possible states and actions increases,
making it difficult for traditional scheduling approaches to
cope with the expanded decision space. RL, however, is
well-suited to handle such complexity through exploration
of the state-action space and the gradual improvement of its
scheduling policy over time. This scalability makes RL an
attractive option for task scheduling in large, geographically
dispersed fog environments, where resource heterogeneity
and varying network conditions add layers of complexity to
the scheduling problem.

2) Deep Reinforcement Learning (DRL)
Deep Reinforcement Learning (DRL) represents a significant
advancement in the field of reinforcement learning, in its
ability to handle large-scale, complex environments. By inte-
grating deep neural networks with traditional reinforcement
learning techniques, DRL enables the agent to approximate
optimal policies even when the state and action spaces are
large and high-dimensional. This makes DRL highly suit-
able for fog computing environments, where task scheduling
involves multiple interconnected nodes, varying workloads,
and dynamic resource availability. Traditional reinforcement
learning algorithms, such as Q-learning, struggle in such
environments due to the "curse of dimensionality," where the
number of possible states and actions becomes too large to
handle with simple tabular methods. DRL addresses this lim-
itation by using neural networks to approximate the action-
value function, allowing the agent to make decisions based
on high-level representations of the system’s state.

Algorithm 1: Reinforcement Learning for Task
Scheduling in Fog Computing

Input: Task set T = {t1, t2, . . . , tn}, fog environment
state S, reward R, discount factor γ

Output: Optimal task scheduling policy π∗

Initialize Q-table Q(S,A), learning rate α,
exploration rate ϵ
while not converged do

Observe the current state S
if Random number < ϵ then

Select a random action (task allocation) A
else

Select action A = argmaxa Q(S, a)
end
Execute action A, observe reward R and next state
S′

Update Q-value:

Q(S,A)← Q(S,A) + α
[
R+ γmax

a′
Q(S′, a′)

- Q(S, A) Set S ← S′

end while
end
Return optimal policy π∗(S) = argmaxa Q(S, a)

In fog computing, the need for efficient task scheduling
is critical. The system must make decisions regarding where
to allocate computational tasks based on factors like task
priority, node load, energy consumption, and network con-
ditions. The state of the environment in this context is highly
complex, as it includes the current status of all available fog
nodes, the characteristics of incoming tasks, and the overall
system load. Additionally, the action space is large, since the
agent must decide on the optimal assignment of each task
to a specific fog node or determine whether tasks should
be delayed or offloaded to the cloud. DRL excels in this
scenario by leveraging the power of deep neural networks to
generalize across similar states and actions, thereby enabling
more sophisticated and efficient scheduling policies.

A typical DRL framework for task scheduling in fog com-
puting begins with the initialization of two neural networks:
the primary network Q(S,A; θ), which estimates the action-
value function for the current state-action pairs, and the target
network Q′(S,A; θ−), which is a periodically updated copy
of the primary network. The target network is used to stabi-
lize the training process by providing more consistent target
values during updates. Additionally, the algorithm initializes
a replay memory D, which stores past experiences, or transi-
tions, in the form of tuples (S,A,R, S′). This replay memory
plays a crucial role in the training process by breaking the
temporal correlations between consecutive experiences and
enabling the agent to learn from a diverse set of experiences
through minibatch training.

The agent interacts with the fog environment by observing

30 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

the current state S, which includes detailed information about
the fog nodes, their resource capacities, and the incoming
tasks. Based on this state, the agent selects an action A,
which represents a specific task scheduling decision. During
the early stages of training, the agent follows an exploration-
exploitation strategy, where it occasionally selects random
actions with probability ϵ to explore the environment and
gather information. As training progresses and the agent
becomes more confident in its estimates of the Q-values, it
shifts towards exploitation, selecting actions that maximize
the Q-values based on the learned policy. Once the agent
selects an action, the fog environment transitions to a new
state S′, and the agent receives a reward R, which quantifies
the quality of the scheduling decision. The reward function
is designed to capture key performance metrics in fog com-
puting, such as minimizing task execution latency, reducing
energy consumption, and balancing the load across nodes.

After each action, the agent stores the transition
(S,A,R, S′) in the replay memory. Periodically, when the
memory reaches a sufficient size, the agent samples a mini-
batch of transitions from the replay memory and performs
updates to the neural network. For each transition in the
minibatch, the agent computes the target value yj , which is
derived from the Bellman equation. The target value depends
on whether the episode has ended or not. If the episode
has ended, meaning the task scheduling decision has been
fully executed (Sinnen, 2007), the target value is simply the
immediate reward Rj . Otherwise, the target value includes
both the immediate reward and the discounted value of
the best future action, as predicted by the target network
Q′(S′, A′; θ−). The agent then performs a gradient descent
step on the loss function, which measures the difference
between the predicted Q-value Q(Sj , Aj ; θ) and the target
value yj . This process updates the weights θ of the primary
neural network, improving its ability to estimate Q-values for
future state-action pairs.

One of the key innovations in DRL is the use of experience
replay, which allows the agent to learn from past experi-
ences in a more efficient and stable manner. By sampling a
minibatch of transitions from the replay memory, the agent
can avoid overfitting to recent experiences and learn from a
broader range of state-action pairs. This helps to reduce the
variance in the learning process and leads to more reliable
convergence towards the optimal policy. Furthermore, the
use of the target network provides additional stability to the
training process by decoupling the target values from the
current Q-value estimates. The target network is updated less
frequently than the primary network, which prevents the Q-
values from oscillating too much during training.

As the training progresses, the agent’s neural network
gradually converges to an optimal task scheduling policy.
This policy maps the current state of the fog environment
to the best possible scheduling action, taking into account
various factors like task priority, the available resources on
each fog node, and energy consumption. The agent learns to
balance these competing objectives by maximizing the cumu-

lative reward over time. For example, it may prioritize tasks
with higher urgency, allocate tasks to underutilized nodes
to prevent overload, or consider energy-efficient scheduling
strategies that extend the lifetime of fog nodes. The learned
policy is inherently adaptive, meaning that it can respond
to changes in the fog environment, such as fluctuating task
arrival rates or dynamic changes in resource availability.

Traditional scheduling algorithms are often limited by
their reliance on predefined rules or static heuristics, which
may not scale well in large, distributed systems with hetero-
geneous resources. In contrast, DRL can learn directly from
the environment, allowing it to discover novel scheduling
strategies that may not be apparent through manual design.
The neural network architecture used in DRL enables the
agent to capture complex relationships between different
system variables, such as the trade-offs between latency,
energy consumption, and load balancing. This results in more
efficient and effective task scheduling policies that are better
suited to the diverse and dynamic nature of fog computing
environments (Topcuoglu et al., 2002).

3) Genetic Algorithms (GA)
Genetic algorithms (GA) represent a class of evolutionary op-
timization techniques that have gained significant traction in
solving complex, nonlinear optimization problems. Inspired
by the process of natural selection and genetics, GAs itera-
tively evolve a population of candidate solutions towards an
optimal or near-optimal solution over successive generations.
In the context of fog computing, where task scheduling is a
critical and complex problem due to the distributed nature
of resources, GAs provide a flexible and robust method
for searching across vast solution spaces. Fog computing
environments are characterized by heterogeneous resources,
dynamic workloads, and the need to balance multiple objec-
tives, such as minimizing task completion time, balancing
load across nodes, and reducing energy consumption. These
characteristics make traditional task scheduling algorithms
less effective as they are often static and cannot easily adapt
to fluctuating conditions (Omara & Arafa, 2010). GAs, with
their population-based search and ability to explore a wide
range of solutions, are well-suited to such dynamic environ-
ments.

A genetic algorithm begins by initializing a population of
potential solutions, where each individual in the population
represents a possible task scheduling strategy. The initial
population is often generated randomly to ensure diversity,
which is essential for the algorithm to explore different
regions of the solution space. Each individual is evaluated us-
ing a fitness function that measures the quality of the schedul-
ing solution based on specific performance criteria relevant to
fog computing. The fitness function can be designed to opti-
mize multiple objectives simultaneously, such as minimizing
task execution latency, maximizing resource utilization, or
reducing energy consumption. The fitness value assigned
to each individual provides a basis for selecting the best
candidates to serve as parents for the next generation.

VOLUME 5, 2020 31

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

Algorithm 2: Deep Reinforcement Learning for Task
Scheduling in Fog Computing

Input: Task set T = {t1, t2, . . . , tn}, fog environment
state S, reward R, discount factor γ, neural
network parameters θ

Output: Optimal task scheduling policy π∗

Initialize replay memory D, neural network
Q(S,A; θ), target network Q′(S,A; θ−)
Initialize learning rate α, exploration rate ϵ
while not converged do

Observe the current state S
if Random number < ϵ then

Select a random action (task allocation) A
else

Select action A = argmaxa Q(S, a; θ)
end
Execute action A, observe reward R and next state
S′

Store transition (S,A,R, S′) in replay memory D
if Replay memory D is large enough then

Sample a minibatch of transitions
(Sj , Aj , Rj , S

′
j) from D

Compute the target value for each transition:

yj =

{
Rj if the episode ends at step j + 1

Rj + γmaxa′ Q′(S′
j , a

′; θ−) otherwise

Perform a gradient descent step on the loss:

L(θ) =
1

|D|
∑
j

(yj −Q(Sj , Aj ; θ))
2

Update the target network
Q′(S,A; θ−)← Q(S,A; θ)

end
Set S ← S′

end
Return optimal policy π∗(S) = argmaxa Q(S, a; θ)

Selection is the process by which individuals with higher
fitness values are more likely to be chosen to contribute their
genetic material (i.e., their task scheduling strategies) to the
next generation. Several selection methods can be employed,
such as roulette wheel selection, where individuals are cho-
sen probabilistically based on their fitness, or tournament
selection, where a subset of individuals competes, and the
best among them is selected. The idea behind selection is to
preserve and propagate good solutions while discarding poor
ones, thus guiding the search towards optimal task scheduling
strategies.

Once the parents are selected, genetic operations such as
crossover and mutation are applied to create offspring for
the next generation. Crossover is the process of combining
the genetic material (i.e., the task scheduling decisions) of
two parent individuals to produce new offspring. This op-

eration is analogous to biological reproduction, where the
offspring inherit traits from both parents. In the context of fog
computing, crossover might involve exchanging parts of the
task allocation strategies between parents, thereby creating
new schedules that combine different aspects of both parents’
solutions. The crossover probability pc controls how often
crossover is performed. If a random number is less than pc,
crossover is applied; otherwise, the offspring are copies of
the parents.

Mutation is another crucial genetic operation that in-
troduces diversity into the population by making random
changes to an individual’s solution. In task scheduling, mu-
tation might involve changing the assignment of a task to a
different fog node or altering the scheduling order of tasks.
The mutation probability pm determines how frequently mu-
tation occurs, and its role is to prevent the population from
converging prematurely to suboptimal solutions by exploring
new parts of the solution space. Mutation ensures that the al-
gorithm does not get stuck in local optima, thereby enhancing
the overall search process’s robustness.

After crossover and mutation, the offspring population
is evaluated using the same fitness function as before. The
fitness of each new individual is computed, and the best so-
lutions are selected to form the next generation. This process
of selection, crossover, mutation, and evaluation is repeated
over multiple generations, gradually evolving the popula-
tion towards better task scheduling solutions. The number
of generations G determines the termination condition for
the algorithm, though it can also be based on convergence
criteria, such as when the improvement in the best fitness
value becomes negligible over successive generations.

The power of genetic algorithms lies in their ability to
explore a broad solution space while retaining the most
promising solutions through selection. This makes GAs ef-
fective in dynamic environments like fog computing, where
workloads and resource availability fluctuate over time. In
such environments, the optimal task scheduling solution can
change as new tasks arrive, resources are consumed, or net-
work conditions vary. GAs are well-suited to adapt to these
changes because they continually evolve the population of
solutions, allowing the system to respond to new conditions
without the need for manual intervention or reconfiguration.
This adaptability is especially beneficial in fog computing,
where the decentralized and heterogeneous nature of the
infrastructure makes it difficult to predict future states of the
system accurately.

Moreover, GAs can optimize multiple objectives simulta-
neously, making them ideal for the multi-objective nature of
task scheduling in fog computing. For instance, minimizing
task completion time may conflict with minimizing energy
consumption, as faster task execution often requires more
intensive use of resources. By using a carefully designed
fitness function that balances these objectives, GAs can find
solutions that provide an acceptable trade-off between con-
flicting goals. This is done by assigning different weights
to each objective in the fitness function or by using multi-

32 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

objective optimization techniques such as Pareto-based ap-
proaches, where a set of non-dominated solutions is evolved
over time.

Fog computing environments often involve a large number
of tasks and nodes, making the task scheduling problem com-
binatorially complex. The number of possible task-to-node
assignments grows exponentially with the number of tasks
and nodes, making exhaustive search methods impractical.
GAs, however, use population-based search techniques that
allow them to explore large solution spaces without needing
to evaluate every possible solution. By focusing on the most
promising regions of the solution space through selection,
GAs can find high-quality solutions in a reasonable amount
of time, even for large-scale fog computing systems.

Since the fitness of each individual in the population can
be evaluated independently, GAs can easily be parallelized
to take advantage of modern multi-core processors or dis-
tributed computing environments. This parallelism is bene-
ficial in fog computing, where the distributed nature of re-
sources can be leveraged to evaluate multiple task scheduling
solutions concurrently, further speeding up the optimization
process (Parsa & Entezari-Maleki, 2009).

4) Fuzzy Logic-Based Scheduling
Fuzzy logic-based scheduling offers a unique and adapt-
able approach for handling task allocation in fog computing
environments, when dealing with uncertainty or imprecise
information. Unlike traditional scheduling methods, which
require precise numerical inputs and outputs, fuzzy logic
systems operate using degrees of truth rather than binary
logic. This makes them highly suitable for environments
like fog computing, where system states such as node load,
energy levels, or task priorities are not always clearly defined
or may fluctuate over time. By representing these factors
as fuzzy variables, fuzzy logic enables more flexible and
context-aware decision-making, providing a robust solution
for dynamic task scheduling in fog environments (Zhang &
Zhou, 2017).

In fog computing, task scheduling involves distributing
computational tasks among available fog nodes, each with
varying capabilities and resource availability. The challenge
lies in the fact that the state of the system is constantly chang-
ing, with incoming tasks of different sizes, resource con-
straints, and performance requirements. Traditional schedul-
ing algorithms may struggle to accommodate such variability,
especially when faced with incomplete or uncertain informa-
tion about the current system state. Fuzzy logic, however,
excels in these situations by allowing for a graded response
to changing conditions rather than relying on rigid thresholds
or exact measurements.

The core concept behind fuzzy logic is the use of fuzzy
sets and membership functions to represent system state
variables. For example, a fog node’s load might be described
using fuzzy terms such as "low load," "medium load," or
"high load." Each of these terms is associated with a member-
ship function that defines the degree to which the current load

Algorithm 3: Genetic Algorithm for Task Scheduling
in Fog Computing

Input: Task set T = {t1, t2, . . . , tn}, population size
P , crossover probability pc, mutation
probability pm, maximum generations G

Output: Optimal or near-optimal task scheduling
solution

Initialize population P0 with random task scheduling
solutions
for g = 0 to G do

Evaluate the fitness of each individual in
population Pg

Select parents from Pg based on fitness
Generate offspring population by applying
crossover and mutation:
for each pair of parents do

if Random number < pc then
Perform crossover to create offspring

else
Copy parents without modification

end
for each offspring do

if Random number < pm then
Perform mutation on the offspring

end
end

end
Evaluate the fitness of the offspring
Select the next generation population Pg+1 by
combining parents and offspring

end
Return the best solution from the final population PG

level belongs to each category. This contrasts with classical
logic, where the load would be either low or not low, with
no intermediate values. In fuzzy logic, the current load might
partially belong to both the "medium load" and "high load"
categories, with membership degrees representing the extent
to which the load satisfies each condition.

Fuzzy logic-based scheduling begins by initializing fuzzy
sets for the system state variables that are relevant to task
scheduling decisions (Singh et al., 2017). These variables
might include factors such as node load, energy consumption,
network latency, and task priority. For each of these variables,
a corresponding fuzzy membership function is defined to
describe the different possible states. For instance, a fuzzy
set for energy levels might include terms like "low energy,"
"medium energy," and "high energy," each with a member-
ship function that assigns a degree of membership based on
the current energy level of a fog node.

Once the fuzzy sets and membership functions are de-
fined, the scheduling process starts by evaluating the current
state of the fog environment for each task that needs to be
scheduled. The system gathers information about the current

VOLUME 5, 2020 33

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

load on each fog node, their available energy levels, and the
characteristics of the incoming tasks, such as their priority
or computational requirements. For each fuzzy variable, the
degree of membership is computed using the membership
functions. For example, if a fog node is currently operating
at 70% capacity, it might have a membership degree of 0.7 in
the "high load" fuzzy set and a membership degree of 0.3 in
the "medium load" fuzzy set. Similarly, if the node’s energy
level is at 40%, it might belong to the "medium energy" set
with a membership degree of 0.6 and to the "low energy" set
with a degree of 0.4.

After evaluating the degrees of membership for each fuzzy
variable, the system applies a set of fuzzy inference rules to
determine the appropriate scheduling decision. These rules
are typically structured in an "if-then" format, where the
antecedent defines the conditions that must be met, and the
consequent specifies the resulting action. For instance, a
fuzzy rule might state, "if the load is high and the energy
is low, then delay the task." Another rule might state, "if
the load is medium and the task priority is high, then assign
the task to the node." The fuzzy inference process involves
checking the antecedent conditions for each rule and combin-
ing the degrees of membership of the relevant fuzzy variables
to determine the degree to which the rule is satisfied. This
process is known as fuzzy reasoning, and it allows for a more
nuanced decision-making process that can handle multiple,
potentially conflicting factors simultaneously.

Once the fuzzy inference step is completed, the next phase
is defuzzification, where the fuzzy output is converted into
a crisp, actionable decision. Various defuzzification methods
can be employed, with the centroid method being one of the
most commonly used. In this method, the defuzzified output
is calculated as the center of gravity of the fuzzy set produced
by the inference step. This results in a single, crisp value
that represents the final scheduling decision. For example,
the defuzzified output might indicate the specific fog node
to which the task should be allocated or suggest delaying the
task for later execution if the system is currently overloaded
(Radulescu & Van Gemund, 2000).

Unlike deterministic algorithms, which rely on precise
thresholds and rigid decision boundaries, fuzzy logic-based
schedulers can adapt to changing conditions by reasoning
with imprecise information. This enables more context-aware
scheduling decisions that account for the current state of the
system in a more holistic manner. For example, a traditional
scheduler might fail to allocate a task if a node’s load is
slightly above a predefined threshold, even if the node has
sufficient resources to handle the task. In contrast, a fuzzy
logic-based scheduler can consider the node’s load as "mod-
erately high" and assign the task if other conditions, such as
energy levels and task priority, are favorable.

Moreover, fuzzy logic-based scheduling is inherently suit-
able for real-time decision-making, which is crucial in fog
computing environments where tasks must be scheduled
promptly to meet latency requirements. The fuzzy inference
process can be executed quickly, allowing the system to

evaluate the current state and make scheduling decisions in
real time. This is important in fog computing, where the
delay caused by scheduling decisions can directly impact the
performance of time-sensitive applications.

Fog computing systems often need to balance competing
objectives, such as minimizing task execution time, conserv-
ing energy, and avoiding overloading specific nodes. Fuzzy
logic allows these objectives to be incorporated into the
scheduling decision-making process without requiring com-
plex mathematical formulations. By defining fuzzy sets and
rules that account for each objective, the scheduler can make
trade-offs between them in a way that reflects the current
state of the system. For example, if a node’s energy level is
low but its load is moderate, the scheduler might prioritize
energy conservation by delaying non-urgent tasks, while still
allowing high-priority tasks to be executed.

Algorithm 4: Fuzzy Logic-Based Scheduling for Fog
Computing

Input: Task set T = {t1, t2, . . . , tn}, fuzzy variables
for system state (e.g., load, energy, task
priority), fuzzy rule base

Output: Task scheduling decision

Initialize fuzzy sets for system state variables (e.g.,
"low load", "medium load", "high load") and
corresponding membership functions
while tasks remain in the system do

for each task ti in T do
Evaluate the current fog environment state
(e.g., node load, energy level)
for each fuzzy variable (e.g., load, energy,

priority) do
Compute the degree of membership for
each fuzzy set (e.g., "low load", "high
energy") using the membership functions

end
Apply fuzzy inference using the fuzzy rule
base:
for each rule in the fuzzy rule base do

If the antecedent conditions are satisfied
(e.g., "if load is high and energy is low")
then infer a scheduling decision (e.g.,
delay task, allocate to a specific node)

end
Defuzzify the output using a defuzzification
method (e.g., centroid method) to get a crisp
scheduling decision
Assign task ti to the appropriate fog node or
delay based on the defuzzified result

end
end
Return final task schedule

Advantages and Limitations of AI-Based Scheduling in
Fog Computing AI-based scheduling algorithms excel in

34 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

handling the complexity and uncertainty of dynamic fog
environments. Their ability to learn from past experiences
and adapt to future conditions makes them highly effective
in managing stochastic task arrivals and fluctuating resource
availability. These algorithms are also capable of multi-
objective optimization, balancing multiple system metrics
such as latency, energy consumption, and resource utiliza-
tion.

However, AI-based algorithms come with significant com-
putational overhead, during the training phase. Deep learn-
ing models, for instance, require substantial computational
power and time to train, which may not be feasible on
resource-constrained fog nodes. Additionally, the real-time
decision-making requirements of fog computing systems can
be challenging for AI-based algorithms that involve complex
inference processes. The trade-off between adaptability and
computational complexity must be carefully managed, espe-
cially in scenarios where fast, real-time scheduling is critical.

III. PERFORMANCE METRICS FOR COMPARATIVE
EVALUATION
In the evaluation of scheduling algorithms, in the context of
fog computing, performance metrics are critical for assessing
the relative strengths of heuristic and AI-based approaches.
This section provides a detailed discussion of key metrics
used for comparative analysis: latency, energy consumption,
resource utilization, and scalability.

Latency, or task completion time, is a fundamental metric
in task scheduling systems, in environments with real-time
or near-real-time constraints (Krause et al., 1975). Latency
refers to the total time elapsed from the moment a task
enters the system to the moment it is fully processed and
its results are available. In fog computing, where resources
are distributed and often heterogeneous, latency can vary
significantly depending on how effectively tasks are sched-
uled and allocated across available nodes. Traditional heuris-
tic algorithms typically follow predefined rules, which can
be efficient in static or predictable environments. However,
their inability to dynamically adjust to changing system
conditions often results in suboptimal latency performance
under fluctuating workloads or node failures. AI-based algo-
rithms, especially those using reinforcement learning (RL)
and deep reinforcement learning (DRL), are generally more
effective in reducing latency in dynamic environments. By
continuously learning from the system’s state and adapting
scheduling decisions based on real-time conditions, these
algorithms can significantly reduce task waiting times and
ensure quicker completion of tasks.

The latency L of a task can be expressed as:

L = Wq +Ws + E

where Wq is the queuing time (i.e., the time the task waits
before being processed), Ws is the service time (i.e., the time
taken by the node to execute the task), and E is any additional
overhead incurred during task transmission between nodes.

AI-based algorithms, by learning to minimize both Wq and
Ws, can adapt to varying network conditions and load distri-
butions, often outperforming heuristics in complex scenarios.
Moreover, RL-based methods can further optimize latency by
predicting the future state of the system and making proactive
scheduling decisions, rather than merely reacting to current
conditions.

Another crucial metric in fog computing is energy con-
sumption. Since fog nodes often operate on limited power
supplies, in edge environments, minimizing energy consump-
tion is essential to prolong node lifetimes and ensure the
sustainability of the system. Heuristic algorithms, due to
their simple, rule-based structures, generally impose lower
computational and energy overheads. This is because they
typically do not involve complex decision-making processes
or frequent state evaluations, allowing them to execute more
efficiently in terms of energy usage. However, this simplicity
often comes at the cost of suboptimal resource allocation,
which can lead to higher cumulative energy consumption
over time.

AI-based algorithms, on the other hand, offer the potential
for more sophisticated energy optimization strategies. By
learning to schedule tasks on nodes that exhibit higher energy
efficiency or lower energy costs, these algorithms can sig-
nificantly reduce the overall energy footprint of the system.
For example, in an RL-based approach, the reward function
can be designed to incentivize energy-efficient scheduling,
where the agent learns to prioritize nodes with lower power
consumption per task unit. The energy consumption Ec of a
task can be modeled as:

Ec = Pt · T

where Pt is the power consumed by the node during task
execution and T is the execution time of the task. AI-based
approaches can minimize both Pt and T by dynamically
allocating tasks to nodes with better energy profiles and by
optimizing the task execution order to minimize idle times.

Resource utilization is another critical metric, in fog com-
puting environments where resources such as CPU, memory,
and bandwidth are often limited. High resource utilization is
generally desirable as it indicates that the system is effec-
tively using its available resources to process tasks. Low re-
source utilization, on the other hand, suggests that resources
are underutilized, leading to inefficiencies and potential bot-
tlenecks. Heuristic algorithms typically have fixed strategies
for task allocation that do not account for the real-time state
of system resources. As a result, these algorithms may fail to
fully utilize the available resources, especially under highly
variable workloads.

In contrast, AI-based algorithms, those using dynamic
optimization techniques such as RL or genetic algorithms
(GAs), can adapt task allocation strategies in response to
changing system conditions, leading to higher resource uti-
lization. By continuously monitoring the state of CPU, mem-
ory, and bandwidth, these algorithms can distribute tasks

VOLUME 5, 2020 35

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

more effectively across nodes, ensuring that no single re-
source becomes a bottleneck. The resource utilization U for
a particular resource (e.g., CPU) can be defined as the ratio
of the used resource capacity to the total available capacity:

U =
Cused

Ctotal

where Cused is the amount of resource capacity currently
being used, and Ctotal is the total available capacity of the
resource. AI-based approaches can increase U by dynami-
cally allocating tasks to underutilized nodes, thus balancing
the load more effectively across the system.

Scalability is a key concern in fog computing, as the
number of devices and tasks in the network grows. An ideal
scheduling algorithm should be able to handle increasing
numbers of tasks and nodes without significant degradation
in performance. Heuristic algorithms, due to their simplicity,
are often easier to scale in terms of computational overhead.
However, their performance may degrade as the system
becomes more complex because they lack the flexibility to
adapt to larger, more heterogeneous environments.

AI-based approaches, those employing GAs and RL, often
exhibit better scalability in terms of their ability to handle
increasing system complexity. GAs, for example, can evolve
scheduling strategies over time, allowing them to explore a
broader solution space as the network grows. RL-based meth-
ods can similarly scale by learning more complex policies
that take into account the larger state space associated with
more tasks and nodes. However, the computational overhead
of AI-based algorithms tends to increase with the size of
the network. For instance, in an RL-based approach, the
state space and action space both grow exponentially with
the number of nodes and tasks, which can lead to increased
computation times and memory requirements.

The scalability S of a scheduling algorithm can be eval-
uated in terms of its ability to maintain performance as the
size of the network N increases. For instance, a scalable
algorithm would ideally have a performance degradation rate
dS/dN close to zero. However, in practical scenarios, AI-
based approaches often exhibit a non-zero degradation rate
due to their increased computational complexity. To mitigate
this, various optimization techniques, such as hierarchical
RL or distributed learning approaches, can be employed to
reduce the computational burden as the network scales.

IV. CONCLUSION
Fog computing represents a novel paradigm that expands tra-
ditional cloud computing by relocating computational tasks
to network nodes positioned closer to the data source, such
as edge devices, routers, and gateways. This decentralized
approach is critical for applications that require low latency
and high bandwidth, including autonomous vehicles, real-
time analytics for the Internet of Things (IoT), industrial
automation, and smart city infrastructures. In fog computing,
the nodes involved typically operate in heterogeneous envi-
ronments, characterized by significant disparities in compu-

Latency
L = Wq +Ws + E

Energy Consumption
Ec = Pt · T

Resource Utilization
U = Cused

Ctotal

Scalability
dS
dN ≈ 0

FIGURE 5. Performance Metrics for Comparative Evaluation in Scheduling
Algorithms

tational power, memory, network bandwidth, and energy ef-
ficiency. Additionally, fog networks are inherently dynamic,
with varying network conditions and fluctuating workloads
due to the stochastic nature of task arrivals, which occur at
unpredictable times and with diverse resource demands.

Scheduling in fog computing refers to the process of
assigning computational tasks to fog nodes in a manner that
maximizes overall system performance. Key performance
metrics include minimizing task completion time, reducing
energy consumption, and ensuring efficient use of avail-
able resources. Compared to traditional cloud computing,
scheduling in fog environments is more complex due to the
heterogeneity of resources and the unpredictable, stochas-
tic nature of task arrivals. The dynamic conditions of fog
networks demand real-time, adaptive scheduling strategies
capable of handling these variabilities while optimizing per-
formance. Effective scheduling must address several objec-
tives, such as minimizing latency by reducing the time from
task arrival to completion, optimizing energy consumption—
for energy-limited edge devices—and maximizing resource
utilization to avoid overloading or underutilizing network
nodes. Additionally, scheduling strategies must scale effi-
ciently as the number of tasks and fog nodes increases
without significant degradation in performance. This paper
will focus on two primary categories of scheduling algo-
rithms: heuristic-based approaches, which rely on rule-based
decision-making, and AI-based approaches, which leverage
learning techniques to optimize scheduling decisions in real
time.

Fog computing infrastructures are fundamentally different
from centralized cloud systems, in how they are structured
and operate. One of the most significant differences is their
decentralized nature, which requires scheduling algorithms
to account for the proximity of nodes to the data source. Sev-
eral characteristics of fog computing directly impact schedul-
ing decisions. First, fog nodes are highly heterogeneous,
meaning they vary greatly in terms of processing power,
memory capacity, storage, and communication capabilities.
Scheduling tasks without considering these differences can
result in performance bottlenecks, such as assigning a high-
complexity task to a low-capacity node, leading to delays

36 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

and reduced system efficiency. Additionally, the dynamic
nature of fog environments further complicates scheduling.
Nodes may unpredictably join or leave the network due to
factors like mobility, hardware failures, or energy depletion.
Resource availability also fluctuates as the network experi-
ences varying loads, requiring scheduling algorithms to be
adaptive and responsive to these changes in real time. An-
other challenge is the stochastic nature of task arrivals, where
tasks arrive unpredictably, often without prior knowledge of
their size, resource requirements, or deadlines. Scheduling
decisions, therefore, need to be made in real time and must
balance the resources available with future task demands.

Fog computing is also designed to support latency-
sensitive applications, such as real-time video analytics, in-
dustrial IoT, and autonomous systems. These applications
demand ultra-low latency, placing additional pressure on
scheduling algorithms to prioritize tasks requiring minimal
delay while managing resource contention and energy con-
sumption effectively. Energy efficiency is another critical
factor in fog scheduling, for edge devices with limited energy
resources. Scheduling algorithms must balance the need for
low latency with energy efficiency to ensure that the sys-
tem remains sustainable over time. As a result, the main
objectives for scheduling in fog computing revolve around
minimizing task latency, optimizing energy consumption,
maximizing resource utilization, and ensuring scalability in
increasingly complex environments.

Heuristic-based scheduling algorithms offer a straightfor-
ward approach to task allocation, focusing on computational
efficiency and ease of implementation. These algorithms are
useful in fog environments where resources are constrained,
and fast scheduling decisions are necessary. However, their
simplicity comes at the cost of adaptability, as heuristic meth-
ods are generally less effective in handling the dynamic and
stochastic conditions characteristic of fog networks. Com-
mon heuristic approaches include First-Come-First-Served
(FCFS), Round Robin (RR), and Greedy algorithms. FCFS
schedules tasks in the order they arrive, which is compu-
tationally inexpensive but often leads to poor performance
in dynamic environments where task priorities and resource
availability vary. Similarly, RR distributes tasks evenly across
nodes but fails to consider the capabilities of each node
or the specific resource requirements of the tasks, poten-
tially overloading weaker nodes while underutilizing stronger
ones. Greedy algorithms allocate tasks to the best available
resource at the time, such as the least-loaded node, but
this myopic approach often results in suboptimal long-term
performance as future task arrivals and resource demands are
not considered.

Other heuristic algorithms, such as Min-Min and Max-
Min, attempt to balance task allocation more effectively.
Min-Min schedules the smallest tasks first, assigning them
to the nodes that can complete them most quickly, thereby
reducing waiting times for small tasks but potentially de-
laying larger ones. Max-Min, on the other hand, prioritizes
larger tasks, assigning them to nodes that can handle them

without significantly delaying smaller tasks. This approach
is useful in heterogeneous environments where large tasks
might otherwise monopolize node resources. Despite their
computational efficiency, heuristic algorithms are generally
limited in their ability to handle the unpredictable and dy-
namic conditions of fog computing environments. They do
not account for future task arrivals or resource availability
fluctuations, which can lead to inefficiencies, especially in
highly dynamic networks.

In contrast, AI-based scheduling algorithms offer a more
sophisticated approach, in complex, dynamic, and stochastic
environments like fog computing. These algorithms leverage
machine learning (ML) techniques to predict future resource
demands and optimize scheduling decisions based on real-
time feedback. Reinforcement learning (RL) is one of the
most common approaches used in AI-based scheduling,
where the scheduling problem is modeled as a Markov
Decision Process (MDP). Here, the system state, such as
node load, task queue length, and resource availability, is
continuously updated based on actions, like task allocations.
The RL agent learns an optimal policy by interacting with the
environment and receiving rewards, such as lower latency or
reduced energy consumption. Over time, the agent improves
its decision-making process to maximize cumulative rewards.

Q-learning and Deep Q-Networks (DQN) are popular RL
algorithms applied to task scheduling. Q-learning updates a
value function that estimates the expected reward for each
action in a given state, while DQN extends this by using
neural networks to approximate value functions in more com-
plex, high-dimensional state spaces. Deep Reinforcement
Learning (DRL) further advances RL by combining it with
deep neural networks, enabling the scheduling algorithm
to handle large-scale, complex environments with multiple
nodes, tasks, and resource constraints. DRL-based schedulers
are effective in fog environments where traditional heuristic
methods fall short. By learning from past experiences and
predicting future task arrivals, DRL-based schedulers can op-
timize task allocations in real time, reducing latency, energy
consumption, and resource contention. However, the compu-
tational complexity of these algorithms, during the training
phase, can be a limiting factor in resource-constrained fog
environments.

Other AI-based scheduling techniques include genetic al-
gorithms (GAs) and fuzzy logic-based systems. GAs are
evolutionary algorithms that search for optimal scheduling
solutions through selection, crossover, and mutation pro-
cesses. These algorithms are useful in nonlinear and complex
scheduling problems, where they can explore a wide range of
potential solutions and adapt to changing system conditions
over time. Fuzzy logic-based systems, on the other hand,
handle uncertainty and imprecision in decision-making by
reasoning with fuzzy sets and rules. In fog computing, fuzzy
logic-based schedulers evaluate system states, such as node
load or task priority, using fuzzy linguistic variables like
"high load" or "low energy." This allows for more flexible and
adaptive scheduling decisions in environments where precise

VOLUME 5, 2020 37

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

information about resource availability or task requirements
is not readily available.

AI-based scheduling algorithms generally outperform
heuristic methods in dynamic, stochastic, and heterogeneous
environments due to their ability to learn from system behav-
ior and adapt to changing conditions. By predicting future
task arrivals and resource demands, AI-based algorithms
can make real-time scheduling decisions that improve per-
formance metrics such as latency, energy efficiency, and
resource utilization. However, these benefits come at the
cost of increased computational overhead. For instance, DRL
models require extensive training data and significant compu-
tational resources, which may not be feasible for fog nodes
with limited processing power. As a result, the trade-off
between adaptability and computational complexity must be
carefully considered, especially for time-critical applications.

Comparing heuristic and AI-based scheduling algorithms
reveals several key performance differences. In terms of
latency, AI-based algorithms, those using RL and DRL, gen-
erally outperform heuristic methods by dynamically optimiz-
ing task allocations and reducing queuing times. AI-based
approaches also tend to be more energy-efficient in the long
run, as they can learn to allocate tasks to nodes with higher
energy efficiency, although heuristic methods consume less
energy upfront due to their lower computational demands.
Regarding resource utilization, AI-based algorithms offer
more efficient use of available resources, dynamically adjust-
ing task allocations based on real-time feedback. Finally, AI-
based approaches, DRL and GA, scale more effectively in
larger, more complex systems, although their computational
overhead increases with system size, which may limit their
applicability in certain resource-constrained environments.
While the research presented provides insights into the com-
parative performance of heuristic and AI-based scheduling
algorithms in fog computing, there are several limitations that
should be acknowledged. These limitations stem from the
inherent complexity of fog environments, the constraints of
current methodologies, and the challenges of implementing
these algorithms in practical, real-world settings. Addressing
these limitations is crucial for advancing the understanding of
task scheduling in fog computing and refining the approaches
evaluated in this study (Guo et al., 2012).

One of the primary limitations of this research is the
focus on idealized or simplified models of fog computing
environments, which may not fully capture the complexities
and nuances of real-world scenarios. While the comparative
study of heuristic and AI-based algorithms offers theoretical
insights, fog networks in practical implementations are far
more heterogeneous and unpredictable than what is modeled
in many of the simulations and evaluations conducted. Real-
world fog environments often involve a broader range of de-
vices with vastly different capabilities, including low-power
IoT sensors, mobile devices, and more powerful edge servers,
each with varying levels of computational power, memory,
bandwidth, and energy reserves. The research assumes that
the fog nodes are relatively homogeneous within certain

constraints, but this assumption may lead to an oversimpli-
fication of the scheduling problem. In reality, the disparity
between the weakest and most powerful nodes in a fog
network can be substantial, and this variability can signifi-
cantly impact the performance of both heuristic and AI-based
algorithms in ways that are difficult to predict from simplified
models.

Additionally, real-world fog environments are subject to
far more complex and unpredictable task arrival patterns than
those typically modeled in research simulations. In many
cases, task arrivals in fog networks are influenced by external
factors such as user behavior, sensor activity, and network
traffic, which introduce additional layers of stochasticity that
are not fully captured by the probabilistic models used in
most studies. As a result, the conclusions drawn from these
models may not translate seamlessly to real-world applica-
tions, where the timing, size, and computational requirements
of tasks can vary dramatically. This unpredictability poses a
significant challenge for scheduling algorithms, those based
on heuristics, which rely on fixed rules and may not be
flexible enough to adapt to such dynamic conditions. Even
AI-based algorithms, despite their capacity to learn from
historical data and predict future states, may struggle to
handle the full range of variability encountered in operational
fog environments. Therefore, the results of this study, while
in controlled scenarios, may not fully generalize to the com-
plexities of real-world fog computing.

A second significant limitation of this research lies in the
computational overhead associated with AI-based scheduling
algorithms, which is problematic in resource-constrained fog
environments. While AI techniques such as reinforcement
learning (RL), deep reinforcement learning (DRL), and ge-
netic algorithms (GA) offer superior performance in dy-
namic and heterogeneous conditions, their implementation
comes at a substantial cost in terms of computational power,
memory usage, and training time. These algorithms often
require extensive training data and significant computational
resources to learn optimal scheduling policies, which can be
prohibitive in environments where the fog nodes themselves
are resource-constrained. In many fog networks, edge de-
vices have limited processing power and battery life, making
it challenging to implement resource-intensive AI algorithms
without negatively impacting the overall performance of the
network.

The trade-off between the adaptability of AI-based meth-
ods and the computational demands they place on the system
is a crucial issue that this study does not fully address.
For instance, while DRL-based schedulers may outperform
heuristic approaches in terms of latency reduction and re-
source utilization, the overhead involved in training and
deploying these models can outweigh the benefits in smaller
or less resource-rich fog networks. This issue is relevant
for applications that require real-time or near-real-time task
scheduling, where the latency introduced by complex AI al-
gorithms could negate their advantages in terms of optimized
resource allocation. Furthermore, the energy consumption

38 VOLUME 5, 2020

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

associated with running AI-based schedulers on resource-
limited devices can also be a significant drawback. The study
touches on this issue but does not explore it in sufficient
depth, leaving open the question of how to balance the
computational complexity of AI-based algorithms with the
practical constraints of fog environments.

Another limitation concerns the scalability of the algo-
rithms examined in this study, when applied to large-scale
fog networks with a high number of nodes and tasks. While
the paper highlights scalability as a key performance metric,
it does not fully address the challenges associated with scal-
ing AI-based methods, especially in highly distributed and
resource-constrained fog environments. AI algorithms, those
involving deep learning, tend to become more computation-
ally expensive as the number of nodes and tasks increases
(Sugomori et al., 2017). As the fog network grows, the com-
plexity of the scheduling problem increases exponentially,
and the computational burden of maintaining accurate mod-
els and making real-time scheduling decisions can become
prohibitive. Although heuristic algorithms may scale more
efficiently due to their simplicity, their lack of adaptability
makes them less effective in large, heterogeneous networks
where node capabilities and task requirements vary signifi-
cantly.

Moreover, the research does not adequately account for
the impact of network latency and communication overhead
on the performance of scheduling algorithms. In real-world
fog networks, task scheduling often requires communication
between distributed nodes, and the delays introduced by this
communication can significantly affect the overall system
performance. AI-based algorithms, those that rely on central-
ized training or decision-making processes, may suffer from
increased latency as the network size grows, leading to delays
in task allocation and execution. Heuristic methods, while
less computationally intensive, may also face challenges in
large networks due to the increased communication required
to gather and distribute task and resource information. The
study does not fully explore these issues, which could have
a significant impact on the real-world applicability of the
algorithms being evaluated.

Finally, the study does not sufficiently consider the secu-
rity and privacy challenges associated with fog computing,
which are becoming increasingly important as fog networks
are deployed in sensitive applications such as healthcare,
autonomous driving, and industrial control systems. Task
scheduling in fog computing often involves the transmission
of sensitive data between nodes, and the algorithms used
must ensure that data privacy and security are maintained
throughout the scheduling process. AI-based algorithms,
those involving machine learning, may require access to
large amounts of data for training, raising concerns about
data privacy and the potential for data breaches. While this
research focuses on performance metrics such as latency,
energy consumption, and resource utilization, it does not ad-
dress the security implications of the scheduling approaches
being evaluated. As fog computing continues to expand into

critical applications, ensuring the security and privacy of task
scheduling will be essential, and this is an area that requires
further investigation.

VECTORAL PUBLISHING POLICY
VECTORAL maintains a strict policy requiring authors to
submit only novel, original work that has not been published
previously or concurrently submitted for publication else-
where. When submitting a manuscript, authors must provide
a comprehensive disclosure of all prior publications and
ongoing submissions. VECTORAL prohibits the publication
of preliminary or incomplete results. It is the responsibility
of the submitting author to secure the agreement of all co-
authors and obtain any necessary permissions from employ-
ers or sponsors prior to article submission. The VECTORAL
takes a firm stance against honorary or courtesy authorship
and strongly encourages authors to reference only directly
relevant previous work. Proper citation practices are a fun-
damental obligation of the authors. VECTORAL does not
publish conference records or proceedings.

VECOTORAL PUBLICATION PRINCIPLES
Authors should consider the following points:

1) To be considered for publication, technical papers must
contribute to the advancement of knowledge in their
field and acknowledge relevant existing research.

2) The length of a submitted paper should be proportion-
ate to the significance or complexity of the research.
For instance, a straightforward extension of previously
published work may not warrant publication or could
be adequately presented in a concise format.

3) Authors must demonstrate the scientific and technical
value of their work to both peer reviewers and editors.
The burden of proof is higher when presenting extraor-
dinary or unexpected findings.

4) To facilitate scientific progress through replication,
papers submitted for publication must provide suffi-
cient information to enable readers to conduct similar
experiments or calculations and reproduce the reported
results. While not every detail needs to be disclosed,
a paper must contain new, usable, and thoroughly de-
scribed information.

5) Papers that discuss ongoing research or announce the
most recent technical achievements may be suitable for
presentation at a professional conference but may not
be appropriate for publication.

References
Arunarani, A., Manjula, D., & Sugumaran, V. (2019). Task

scheduling techniques in cloud computing: A liter-
ature survey. Future Generation Computer Systems,
91, 407–415.

Atabakhsh, H. (1991). A survey of constraint based schedul-
ing systems using an artificial intelligence approach.
Artificial Intelligence in Engineering, 6(2), 58–73.

VOLUME 5, 2020 39

Sathupadi, K. (2020): Quarterly Journal of Computational Technologies for Healthcare

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog
computing and its role in the internet of things. Pro-
ceedings of the first edition of the MCC workshop
on Mobile cloud computing, 13–16.

Chen, S., Zhang, T., & Shi, W. (2017). Fog computing. IEEE
Internet Computing, 21(2), 4–6.

Dastjerdi, A. V., Gupta, H., Calheiros, R. N., Ghosh, S. K.,
& Buyya, R. (2016). Fog computing: Principles,
architectures, and applications. In Internet of things
(pp. 61–75). Elsevier.

El-Rewini, H., Lewis, T. G., & Ali, H. H. (1994). Task
scheduling in parallel and distributed systems.
Prentice-Hall, Inc.

Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task
scheduling optimization in cloud computing based
on heuristic algorithm. Journal of networks, 7(3),
547.

Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren,
N. S., & Mahmoudi, C. (2018). Fog computing
conceptual model.

Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D.
(2017). Fog computing in healthcare–a review and
discussion. IEEE Access, 5, 9206–9222.

Krause, K. L., Shen, V. Y., & Schwetman, H. D. (1975).
Analysis of several task-scheduling algorithms for
a model of multiprogramming computer systems.
Journal of the ACM (JACM), 22(4), 522–550.

Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog com-
puting: A taxonomy, survey and future directions.
Internet of everything: algorithms, methodologies,
technologies and perspectives, 103–130.

Noronha, S., & Sarma, V. (1991). Knowledge-based ap-
proaches for scheduling problems: A survey. IEEE
Transactions on Knowledge and Data Engineering,
3(2), 160–171.

Omara, F. A., & Arafa, M. M. (2010). Genetic algorithms
for task scheduling problem. Journal of Parallel and
Distributed computing, 70(1), 13–22.

Parsa, S., & Entezari-Maleki, R. (2009). Rasa: A new grid
task scheduling algorithm. International Journal of
Digital Content Technology and its Applications,
3(4), 91–99.

Radulescu, A., & Van Gemund, A. J. (2000). Fast and effec-
tive task scheduling in heterogeneous systems. Pro-
ceedings 9th heterogeneous computing workshop
(HCW 2000)(Cat. No. PR00556), 229–238.

Singh, P., Dutta, M., & Aggarwal, N. (2017). A review of
task scheduling based on meta-heuristics approach
in cloud computing. Knowledge and Information
Systems, 52, 1–51.

Sinnen, O. (2007). Task scheduling for parallel systems
(Vol. 60). John Wiley & Sons.

Sugomori, Y., Kaluza, B., Soares, F. M., & Souza, A. M.
(2017). Deep learning: Practical neural networks
with java. Packt Publishing Ltd.

Topcuoglu, H., Hariri, S., & Wu, M.-Y. (2002). Performance-
effective and low-complexity task scheduling for
heterogeneous computing. IEEE transactions on
parallel and distributed systems, 13(3), 260–274.

Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing:
Concepts, applications and issues. Proceedings of
the 2015 workshop on mobile big data, 37–42.

Zhang, P., & Zhou, M. (2017). Dynamic cloud task schedul-
ing based on a two-stage strategy. IEEE Trans-
actions on Automation Science and Engineering,
15(2), 772–783.

40 VOLUME 5, 2020

	Introduction
	Background on Fog Computing and Scheduling Challenges

	Comparative Analysis of Heuristic and AI-Based Scheduling Algorithms
	Heuristic Scheduling Algorithms
	AI-Based Scheduling Algorithms
	Reinforcement Learning (RL)
	Deep Reinforcement Learning (DRL)
	Genetic Algorithms (GA)
	Fuzzy Logic-Based Scheduling

	Performance Metrics for Comparative Evaluation
	Conclusion

