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             Abstract 
Linear System Identification (LSI) is a pivotal procedure in control engineering, aiming to construct 

an accurate model of a system from observed input-output data. Contemporary techniques for LSI 

have incorporated advancements in computational power and machine learning algorithms. 

Subspace-Based Methods represent an evolution from classical identification methods such as ARX 

or ARMAX models. These methods analyze the system's input-output data by identifying its state-

space representation, offering the ability to manage multiple-input and multiple-output systems 

without an excessive computational load. Noteworthy methods include N4SID (Numerical 

algorithms for state-space system IDentification) and MOESP (Multivariable Output Error State 

Space). Frequency-Domain Methods involve the conversion of time-domain input-output data into 

frequency-domain data, facilitating an understanding of the system's dynamic behavior. These 

methods are particularly beneficial when the system exhibits non-minimum phase behavior or when 

noise affects the measurements. Modern methods include spectral analysis and the use of frequency 

response functions. Regularization Techniques are designed to address overfitting and underfitting 

issues that frequently occur during the system identification process. By incorporating a 

regularization term into the loss function, it is feasible to control the model's complexity, thereby 

achieving a balance between the model's fit and its complexity. Examples include Ridge Regression 

and Lasso Regression. Machine Learning Approaches have been applied to system identification due 

to advancements in computational power and the emergence of machine learning. Techniques such 

as Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Deep Learning can manage 

complex nonlinear systems and provide robust identification of linear systems, albeit requiring 

substantial data for training. Bayesian Methods offer a probabilistic framework for system 

identification, integrating uncertainty in both the model and measurements. These methods can 

manage the system's nonlinearity and provide uncertainty estimates for the model parameters. 

Examples include Gaussian Processes and Markov Chain Monte Carlo. The choice of an appropriate 

method for a specific system identification task necessitates a thorough understanding of the 

system's dynamics and the characteristics of these methods, considering the nature of the system 

under study, the availability and quality of data, and the computational resources available. 
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Introduction 
Linear System Identification is a crucial area of research in control theory and signal processing, 

aiming to infer the dynamic behavior of a system based on observed input-output data. It 

involves constructing mathematical models that represent the underlying dynamics of a 

physical system in a linear form. The fundamental assumption in linear system identification is 

that the system can be approximated by a linear combination of its inputs and states. The 

identification process typically employs various methods such as time-domain and frequency-

domain techniques, least squares estimation, or maximum likelihood estimation, to estimate 

the model parameters from the input-output data. These models facilitate the analysis, 

prediction, and control of complex systems in various engineering and scientific applications. 

One common approach to linear system identification is based on the autoregressive moving-

average (ARMA) model. The ARMA model is widely used due to its simplicity and effectiveness 

in representing linear systems with noise. The model expresses the output signal as a 

combination of past output values and past input values, with appropriate coefficients for each 

term. Estimating the ARMA model parameters often involves minimizing the prediction error 

by optimizing the model's coefficients [1]. This process can be achieved through optimization 

algorithms like the least squares method or the maximum likelihood estimation. 

Another popular technique in linear system identification is the use of frequency-domain 

methods, such as the Fourier Transform or the Z-transform. These methods enable the system's 

frequency response to be estimated, providing valuable insights into the system's stability and 

dynamics [2]. By exciting the system with known input signals and measuring the corresponding 

output signals, the frequency response function can be obtained. From this data, system 

parameters like transfer functions or impulse responses can be estimated. Frequency-domain 

identification techniques are particularly useful when dealing with systems with complex 

dynamics and multiple inputs and outputs. 

Linear System Identification has a rich history of traditional techniques that have been widely 

employed to estimate the dynamics of linear systems. One such traditional approach is the 

"Step Response Method." This technique involves exciting the system with a step input and 

observing its response. By analyzing the time-domain response and fitting it to a mathematical 

model, parameters like time constants and gains can be estimated. While the Step Response 

Method is simple and intuitive, it may not be suitable for systems with complex dynamics or 

significant noise. 

Another traditional technique is the "Impulse Response Method." Here, the system is 

stimulated with an impulse input, and its output is recorded. The impulse response of the 

system is then computed, providing valuable insights into the system's dynamic behavior. By 

fitting an appropriate model to the impulse response, parameters like the system's natural 

frequencies and damping ratios can be estimated. The Impulse Response Method is particularly 

useful when dealing with systems with multiple degrees of freedom and resonant behavior [3], 

[4]. 
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The "Correlation Analysis" is another classical approach for linear system identification. This 

method involves examining the correlation between the input and output signals of the system. 

Cross-correlation and auto-correlation techniques are used to determine the relationship 

between the input and output, leading to the estimation of the system's impulse response or 

transfer function [5]. Correlation Analysis can be advantageous when dealing with systems with 

random or stochastic inputs. 

Frequency-domain methods are also traditional techniques used for linear system 

identification. One of the most prominent methods is the "Frequency Response Function" (FRF) 

estimation [6]. This technique involves applying known sinusoidal inputs to the system at 

various frequencies and measuring the corresponding output amplitudes and phases. From this 

data, the FRF can be computed, allowing the estimation of system parameters such as transfer 

functions and resonance frequencies [7]. Frequency-domain methods are particularly effective 

in dealing with linear time-invariant systems. 

Review of Modern Techniques 

Subspace-Based Methods:  

Subspace-based identification methods have shown considerable advancement over classical 

methods such as ARX (AutoRegressive with eXogenous input) or ARMAX (AutoRegressive 

Moving Average with eXogenous input) models. These models are mainly based on the notion 

of system identification in the field of control engineering, where mathematical models of 

dynamic systems are developed based on observed data. Traditionally, ARX or ARMAX models 

have been utilized due to their simplicity, where a system's output is expressed as a linear 

combination of its previous outputs and current and past inputs. However, these models are 

typically constrained in their application, primarily when dealing with multiple-input multiple-

output (MIMO) systems, resulting in substantial computational burdens [8]. 

In contrast, the emergence of subspace-based methods brings forth a paradigm shift in system 

identification. The primary focus of these methods is the analysis of the system's input-output 

data by identifying its state-space representation. This innovative approach enables handling of 

MIMO systems with less computational load, proving to be beneficial in scenarios where ARX 

or ARMAX models have limitations. Subspace-based identification methods, therefore, become 

an ideal choice when the identification of MIMO systems is desired [9]. 

The state-space representation of a system is a mathematical model that represents the 

system's dynamics by a set of first-order differential or difference equations. By identifying this 

representation from the observed input-output data, subspace-based methods achieve an 

insightful analysis of the system [10]. Notably, the process does not require assumptions about 

the noise properties, unlike classical methods, where explicit noise modeling is needed. This 

feature underscores the robustness of subspace-based methods, particularly when dealing with 

real-world systems characterized by unpredictable noise patterns. 

Among the subspace-based identification methods, two methods have become prominent due 

to their efficacy in handling MIMO systems: Numerical algorithms for state-space system 

IDentification (N4SID) and Multivariable Output Error State Space (MOESP). Each method has 

unique features and steps involved in the identification process [11], [12]. 
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N4SID is a subspace identification method that enables the identification of state-space models 

from the observed input-output data. It provides a numerical algorithm, making it 

advantageous when dealing with large datasets or complex systems. The N4SID algorithm starts 

by computing a sample covariance matrix based on the data. It then computes the singular 

value decomposition (SVD) of this matrix, yielding a set of orthogonal basis vectors that span 

the input and output subspaces of the system. By partitioning these vectors and using various 

numerical methods, N4SID then estimates the state-space model parameters. The inherent 

numerical stability of the N4SID method gives it an edge over other methods, allowing for 

accurate and reliable system identification [13]. 

On the other hand, MOESP, another subspace identification method, differs from N4SID in that 

it does not require the computation of the SVD [14]. Instead, MOESP begins by constructing a 

block Hankel matrix from the observed data, which contains time-delayed versions of the 

output sequence. The QR factorization of this matrix is then computed, yielding a set of 

orthogonal basis vectors. The state-space model parameters are estimated by exploiting the 

structure of this basis. One of the strengths of the MOESP method is that it provides a 

computationally efficient means of system identification, especially for MIMO systems [15], 

where the number of inputs and outputs is large [16]. Both N4SID and MOESP share the feature 

of providing accurate and computationally efficient means of system identification, making 

them suitable for applications in various fields, including but not limited to control engineering, 

signal processing, and data science [17], [18]. 

Frequency-Domain Methods:  

Frequency-domain methods represent an essential category in system identification 

techniques. Unlike time-domain methods, which analyze systems based on time-variant signals, 

frequency-domain methods transform time-domain input-output data into the frequency 

domain. This transformation is a significant step that aids in understanding the system's 

dynamic behavior from a different perspective. 

The conversion from time-domain to frequency-domain typically involves the use of Fourier-

related transforms, such as the Fast Fourier Transform (FFT) or Laplace Transform. These 

transformations convert time-based signals into frequency-based signals. In the frequency 

domain, the system's behavior can be studied as a function of frequency, rather than time. The 

frequency representation provides an analysis of how the system responds to different 

frequency components of the input signal.  

Frequency-domain methods are particularly advantageous in certain scenarios. For instance, 

when the system under analysis exhibits non-minimum phase behavior, frequency-domain 

methods can provide more insightful results. Non-minimum phase systems are those systems 

where the zeros of the transfer function lie in the right half of the complex plane in continuous 

time or outside the unit circle in discrete time. These systems pose challenges for control and 

system identification, particularly with time-domain methods. However, in the frequency 

domain, the behavior of these systems can be more effectively characterized, leading to more 

accurate identification results. 

Furthermore, frequency-domain methods are beneficial when noise significantly influences the 

measurements. Noise can introduce errors in the identification process, leading to inaccurate 

system models. In the frequency domain, the impact of noise can be more effectively managed. 
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Certain types of noise can be reduced or eliminated using filtering techniques, leading to cleaner 

data and more accurate system identification [19]. Moreover, frequency-domain methods 

allow for the use of spectral analysis, which can separate the useful signal from noise based on 

their frequency content [20]. 

In the category of frequency-domain methods, several modern techniques have emerged that 

enhance the effectiveness of system identification. Spectral analysis and the use of frequency 

response functions (FRF) are two such prominent methods.  

Spectral analysis is a method used to decompose a signal into its constituent frequency 

components [21]. It is widely used in system identification to analyze the frequency content of 

the input-output data. With spectral analysis, the strength of the various frequency 

components can be visualized, providing a deep understanding of the system's dynamics. 

Moreover, spectral analysis can help identify periodicities in the data, which can be crucial for 

identifying and modeling cyclic behavior in systems [22]. 

Frequency response functions (FRFs) represent another advanced technique used in frequency-

domain identification. An FRF is a complex function that describes the amplitude and phase 

characteristics of a system as a function of frequency. Through FRFs, the steady-state response 

of a system to sinusoidal inputs of different frequencies can be studied. Estimation of FRFs from 

input-output data allows for an accurate and detailed representation of the system's dynamic 

behavior across the frequency spectrum. 

Both spectral analysis and FRF estimation present a set of tools that can be employed for system 

identification in the frequency domain. They allow for the detailed characterization of a 

system's behavior, providing crucial information for system modeling and control design. 

In essence, frequency-domain methods provide a valuable approach to system identification, 

particularly when dealing with non-minimum phase systems or noise-affected measurements. 

The transformation of time-domain data into the frequency domain allows for a deeper 

understanding of the system's dynamic behavior. Modern methods, such as spectral analysis 

and FRF estimation, further enhance the effectiveness of frequency-domain identification, 

making it a vital tool in the field of system identification and control engineering. 

Regularization Techniques:  

Regularization techniques form a crucial component of system identification methods, 

specifically designed to tackle the common problems of overfitting and underfitting that often 

arise during the process of system modeling. Overfitting occurs when the model captures the 

noise along with the underlying trend in the data, leading to poor generalization performance 

on unseen data. Conversely, underfitting is when the model is too simple to capture the 

complexity of the underlying data, resulting in an inaccurate representation of the system 

dynamics. 

Addressing these issues requires a careful balance between the model's fit to the observed data 

and its complexity [23]. Regularization techniques achieve this balance by introducing a 

regularization term into the loss function used in the optimization process. This term penalizes 

the complexity of the model, thereby avoiding excessively complex models that overfit the data. 

At the same time, it allows for enough flexibility in the model to accurately capture the system's 

dynamics, preventing underfitting [24]. 
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There are several techniques for regularization, each introducing a different form of penalty to 

control the model's complexity. Among these, Ridge Regression and Lasso Regression are two 

prevalent methods widely used in system identification. 

Ridge Regression, also known as Tikhonov regularization, is a technique that involves adding a 

squared penalty term to the loss function. The magnitude of this term is controlled by a tuning 

parameter, often referred to as the regularization parameter or lambda. This parameter 

determines the extent to which the model coefficients are shrunk towards zero. In this way, 

Ridge Regression discourages overly complex models with large coefficients, mitigating the risk 

of overfitting. Nevertheless, it retains all predictors in the model, providing a comprehensive 

view of the relationships between the predictors and the output [25]. 

Lasso Regression (Least Absolute Shrinkage and Selection Operator), on the other hand, 

introduces an absolute value penalty term into the loss function. Like Ridge Regression, the 

magnitude of this term is controlled by a regularization parameter. A unique feature of Lasso 

Regression is that, in addition to shrinking the coefficients towards zero, it can also set some 

coefficients exactly to zero when the regularization parameter is sufficiently large. This attribute 

makes Lasso Regression particularly useful when dealing with high-dimensional data, as it 

performs feature selection, i.e., it automatically selects a subset of the most relevant predictors. 

Thus, it not only helps prevent overfitting but also aids in interpreting the model [3]. 

Both Ridge and Lasso Regression have their strengths and can be appropriate depending on the 

context. In situations where predictors are highly correlated, Ridge Regression is generally more 

stable, while Lasso Regression can be advantageous when the objective is to create a 

parsimonious model [26]. 

In summary, regularization techniques provide an effective means of controlling the complexity 

of models in system identification. By introducing a penalty term into the loss function, these 

methods achieve a balance between model fit and complexity, addressing the common issues 

of overfitting and underfitting [27]. Techniques such as Ridge Regression and Lasso Regression 

exemplify the utility of regularization in achieving robust and interpretable system models. 

Machine Learning Approaches:  

The increase in computational power in recent years, coupled with advancements in machine 

learning, has paved the way for the application of various machine learning-based techniques 

in system identification. Techniques such as Support Vector Machines (SVM), Artificial Neural 

Networks (ANN), and Deep Learning provide novel ways to identify system models, with 

particular strengths in handling complex nonlinear systems and robust identification of linear 

systems. 

Support Vector Machines (SVM) are a type of supervised learning model that can be used for 

regression or classification tasks. In the context of system identification, SVMs can be used for 

regression tasks, predicting system outputs based on input data. The key strength of SVMs lies 

in their capacity to handle high-dimensional spaces and the presence of a clear margin of 

separation in the data. These attributes allow SVMs to capture complex relationships between 

inputs and outputs, making them suitable for identifying both linear and nonlinear systems. 

However, the application of SVMs requires careful selection and tuning of parameters such as 
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the regularization parameter, the kernel type, and the kernel parameters, which can 

significantly impact the model's performance [28]. 

Artificial Neural Networks (ANN) represent another machine learning technique that has found 

utility in system identification. ANNs consist of interconnected processing elements, or 

"neurons," arranged in layers, which mimic the structure and function of biological neurons. 

The strength of ANNs lies in their ability to model highly complex, nonlinear relationships 

between inputs and outputs. By adjusting the weights and biases of the network through a 

process known as backpropagation, ANNs can learn to approximate the underlying function 

that maps inputs to outputs. While ANNs can handle high complexity and nonlinearity, they 

require a large amount of data for training, and their high flexibility can lead to overfitting if not 

appropriately managed [29]. 

Deep Learning is a subset of machine learning based on artificial neural networks but 

incorporates multiple layers of nonlinear processing units for feature extraction and 

transformation. Each successive layer uses the output from the previous layer as input. Deep 

learning algorithms are capable of learning to represent data with multiple levels of abstraction, 

making them extremely versatile and capable of handling highly complex and large-scale 

systems. Models based on deep learning, such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), have shown promise in system identification tasks, 

including those with temporal dependencies and spatially distributed systems. 

While machine learning-based techniques offer powerful tools for system identification, it is 

important to note that they require considerable data for training. This requirement stems from 

the high flexibility of these models, which allows them to capture complex patterns but also 

makes them prone to overfitting if trained on insufficient data. Moreover, despite their 

powerful capabilities, machine learning models often lack interpretability, making it difficult to 

understand the relationships they capture. 

In essence, machine learning-based techniques, including SVM, ANN, and Deep Learning, offer 

robust and versatile tools for system identification. These techniques can handle complex 

nonlinear systems and provide robust identification of linear systems, offering significant 

advancements in the field of system identification [30]. However, their application requires 

careful consideration of factors such as data availability, interpretability, and the risk of 

overfitting. 

Bayesian Methods:  

Bayesian methods present a probabilistic approach to system identification, providing a 

comprehensive framework to manage the inherent uncertainty present in both the model and 

measurements. In contrast to deterministic methods, Bayesian techniques account for 

uncertainty and variability by treating model parameters as random variables. This approach 

facilitates a robust way of handling the uncertainty that is inherent in real-world systems, 

leading to more reliable and realistic system models [31]. 

One of the core benefits of Bayesian methods is their ability to handle system nonlinearity. 

Nonlinear systems can be challenging to model using traditional identification methods due to 

their complex dynamics. Bayesian methods, however, can naturally accommodate nonlinear 
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relationships by using probability distributions to capture the complexity and variability in 

system responses. 

Another significant advantage of Bayesian methods is that they provide uncertainty estimates 

for the model parameters. By treating the parameters as random variables, Bayesian 

techniques provide not only point estimates of parameters but also a full posterior distribution 

that quantifies the uncertainty in these estimates. This attribute makes Bayesian methods 

particularly useful for risk assessment and decision making under uncertainty, as they provide 

a full range of plausible values for the parameters, along with the associated probabilities [32]. 

There are several techniques within the Bayesian framework that are particularly relevant for 

system identification. Gaussian Processes (GPs) and Markov Chain Monte Carlo (MCMC) are 

two such methods [33], [34]. 

Gaussian Processes offer a powerful tool for probabilistic nonparametric modeling. A Gaussian 

Process defines a prior over functions, which can be converted into a posterior over functions 

once the data is observed. This attribute makes GPs particularly useful for modeling complex 

systems where the exact form of the underlying function is unknown. GPs also naturally provide 

a measure of uncertainty, giving not just a predicted output but also a confidence interval 

around that prediction. However, the computational cost of GPs can be high, particularly with 

large datasets, due to the need to invert large covariance matrices [35]. 

Markov Chain Monte Carlo (MCMC) is another key Bayesian method used for system 

identification. MCMC is a class of algorithms for sampling from a probability distribution. By 

constructing a Markov chain that has the desired distribution as its equilibrium distribution, one 

can obtain a sample of the desired distribution by recording states from the chain [36]. MCMC 

methods, such as the Metropolis-Hastings algorithm, are commonly used to estimate the 

posterior distribution of model parameters in Bayesian system identification [37]. MCMC allows 

for the estimation of complex posterior distributions that are not analytically tractable, making 

it a powerful tool for Bayesian system identification [38]. 

In summary, Bayesian methods provide a probabilistic approach to system identification, 

handling inherent uncertainty in both the model and measurements. Techniques like Gaussian 

Processes and Markov Chain Monte Carlo offer robust ways of modeling complex nonlinear 

systems and providing uncertainty estimates for the model parameters. Despite their 

computational demands, Bayesian methods offer a compelling approach to system 

identification, particularly when dealing with uncertainty and nonlinearity. 

Conclusion 
Linear System Identification represents a pivotal segment of study in fields such as signal 

processing and control theory, with its core objective being the deduction of a system's 

dynamical operations from the analysis of input-output data. It is centered around the creation 

of mathematical representations that echo the internal dynamics of a physical system in a linear 

manner. Linear System Identification operates on the primary supposition that a system's 

behavior can be represented as a linear amalgamation of its states and inputs. Various methods, 

such as least squares estimation, frequency-domain techniques, or maximum likelihood 

estimation, are employed in the identification process, aiming to ascertain the model 

parameters from the system's input-output data [39]. These models further enhance the 
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process of analysis, control, and prediction of complex systems across a spectrum of scientific 

and engineering applications. 

Linear System Identification often utilizes a widely recognized approach centered around the 

autoregressive moving-average (ARMA) model. The simplicity and effectiveness of the ARMA 

model in portraying linear systems with noise contribute to its widespread usage. This model 

postulates the output signal as an amalgamation of prior input values and past output values, 

attributing suitable coefficients to each term. The procedure to estimate the ARMA model 

parameters frequently necessitates minimizing the prediction error by optimizing the 

coefficients of the model. This minimization can be achieved via optimization algorithms, such 

as the least squares method or maximum likelihood estimation. Furthermore, the Frequency 

Response Function (FRF) estimation is a renowned method employed in the frequency-domain 

techniques for linear system identification. Applying known sinusoidal inputs to the system 

across a range of frequencies and documenting the respective output amplitudes and phases 

allows the computation of the FRF, thus facilitating the estimation of system parameters like 

resonance frequencies and transfer functions [40]. Frequency-domain techniques prove 

especially effective when working with linear time-invariant systems. 

In recent years, there have been remarkable advancements in system identification techniques, 

surpassing classical methods such as ARX and ARMAX models. These traditional models, while 

simple, face limitations in dealing with multiple-input multiple-output (MIMO) systems, leading 

to significant computational burdens. As a result, subspace-based methods have emerged as a 

paradigm shift in the field of system identification, particularly for MIMO systems [41]. 

Subspace-based methods focus on analyzing system input-output data to identify the system's 

state-space representation [42], [43]. This innovative approach eliminates the need for 

assumptions about noise properties, making it robust when dealing with real-world systems 

characterized by unpredictable noise patterns. Among the subspace-based identification 

methods, two prominent techniques are Numerical algorithms for state-space system 

IDentification (N4SID) and Multivariable Output Error State Space (MOESP) [44]. 

N4SID, a numerical algorithm, computes a sample covariance matrix and performs singular 

value decomposition (SVD) to estimate the system's state-space model parameters. Its 

numerical stability ensures accurate and reliable system identification. On the other hand, 

MOESP constructs a block Hankel matrix from the observed data and computes the QR 

factorization to estimate the state-space model parameters. MOESP's efficiency makes it 

suitable for MIMO systems with a large number of inputs and outputs. 

Frequency-domain methods offer an essential alternative to time-domain techniques. By 

transforming time-domain input-output data into the frequency domain using Fourier-related 

transforms, these methods provide a different perspective on the system's dynamic behavior. 

Frequency-domain methods excel in scenarios where the system exhibits non-minimum phase 

behavior or significant noise influences the measurements. 

Spectral analysis and frequency response functions (FRFs) are two modern techniques used in 

frequency-domain system identification. Spectral analysis decomposes signals into constituent 

frequency components, aiding in understanding the system's dynamics. FRFs describe a 
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system's amplitude and phase characteristics as a function of frequency, allowing for accurate 

representation of the system's behavior across the frequency spectrum [45]. 

Regularization techniques play a crucial role in tackling overfitting and underfitting problems in 

system modeling. Ridge Regression and Lasso Regression are two prevalent methods used to 

balance the model's fit and complexity. Ridge Regression introduces a squared penalty term, 

while Lasso Regression incorporates an absolute value penalty term. These techniques provide 

effective means of achieving robust and interpretable system models. 

Machine learning approaches, such as Support Vector Machines (SVM), Artificial Neural 

Networks (ANN), and Deep Learning, have gained popularity in system identification due to 

increased computational power. SVMs handle high-dimensional spaces and clear separations in 

data, making them suitable for both linear and nonlinear systems. ANNs and Deep Learning 

offer versatility in modeling complex relationships, but they require ample training data and 

may lack interpretability. 

Bayesian methods present a probabilistic approach to system identification, accounting for 

uncertainty by treating model parameters as random variables [46], [47]. Gaussian Processes 

and Markov Chain Monte Carlo (MCMC) are key Bayesian techniques used in system 

identification. Gaussian Processes are powerful for probabilistic nonparametric modeling, while 

MCMC allows for estimation of complex posterior distributions [48], [49]. 
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