

63

Journal of Computational Social Dynamics

Research Article: Journal of Computational Social Dynamics Volume: 08

AI-Driven Partitioning Framework for Migrating

Monolithic Applications to Microservices
Vijay Ramamoorthi

Independent Researcher

This work is licensed under a Creative Commons International License.

 Abstract
Microservice Architecture (MSA) has become a standard for designing scalable and flexible
enterprise applications. However, the process of migrating monolithic systems to
microservices is fraught with challenges, including the risk of creating distributed monoliths
and managing complex distributed transactions. To address these issues, we present
CARGO (Context-sensitive lAbel pRopaGatiOn), an AI-guided framework that improves
microservice partitioning through the use of System Dependency Graphs (SDGs) and a
context-sensitive label propagation algorithm. SDGs enable detailed modeling of both
intra-service and inter-service dependencies, capturing critical aspects like call-return,
data, heap, and transactional edges. By iteratively refining partition boundaries, CARGO
minimizes inter-service coupling, reduces the occurrence of distributed transactions, and
enhances service cohesion. Evaluations conducted on benchmark applications such as
Daytrader and JPetStore demonstrate that CARGO significantly outperforms state-of-the-
art tools like Mono2Micro and CoGCN in terms of transaction purity, latency, throughput,
and architectural quality. This work establishes a foundation for automating the migration
of monolithic applications into efficient, scalable microservice architectures and opens
avenues for applying CARGO to other programming environments like Python and .NET.

Keywords: Microservices, Microservice architecture, Neuromorphic AI integration, CARGO framework System

Dependency Graphs

Introduction
Microservice architecture (MSA) has emerged as a transformative approach for the design and

development of enterprise applications, offering significant benefits over traditional monolithic

architectures. By decomposing a system into a set of loosely coupled, independently deployable

services, MSA enhances scalability, facilitates agile development, and improves fault isolation.

Each microservice can evolve independently, be deployed separately, and scale according to

the specific needs of the functionality it provides. For large-scale, cloud-native applications,

microservice architecture is particularly advantageous, allowing organizations to meet the

growing demands of flexibility, performance, and rapid iteration in software development [1],

[2].

64

Journal of Computational Social Dynamics

Despite the advantages of MSA, migrating legacy monolithic applications to a microservice-

based architecture presents substantial challenges. Monolithic systems typically consist of

highly interdependent components, where functionalities and data flows are intertwined.

Manually partitioning these systems into microservices is a complex, time-consuming process

that is prone to error [3]. One of the significant risks during this migration process is the creation

of a distributed monolith—an architecture in which services are deployed independently but

remain tightly coupled through frequent inter-service communication, resulting in performance

inefficiencies and operational complexity. Distributed monoliths often negate the intended

benefits of microservices by introducing new bottlenecks in terms of scalability, fault tolerance,

and maintainability. Another key challenge in microservice partitioning is the management of

transactional boundaries [4]. Monolithic applications often rely on centralized, transactional

databases, where consistency and integrity are maintained through strong ACID guarantees.

When transitioning to microservices, maintaining these guarantees across distributed services

can necessitate the use of distributed transactions, such as two-phase commits. Distributed

transactions are not only complex to implement and manage, but they also introduce

performance overheads and potential consistency issues. Thus, one of the critical objectives in

effective microservice partitioning is to minimize the need for such transactions while

preserving the integrity of business processes.

Traditional approaches to microservice partitioning rely on program analysis techniques such

as call-graph and control-flow graph representations, which identify functional boundaries

based on the interaction patterns within the code. These techniques, while useful, are often

limited by their inability to account for critical dependencies, such as database interactions and

indirect method calls. As a result, these methods may produce partitioning recommendations

that either create distributed monoliths or require extensive use of distributed transactions [5],

[6].

To address the limitations of traditional microservice partitioning methods, we propose the use

of System Dependency Graphs (SDGs), which provide a more detailed and expressive

representation of an application's structure by capturing not only call-return and control-flow

relationships but also data, heap, and transactional dependencies. This allows for a more

accurate modeling of complex inter-component relationships in monolithic applications,

resulting in more effective microservice partitioning. We introduce CARGO (Context-sensitive

lAbel pRopaGatiOn), an AI-driven framework that utilizes a novel context-sensitive label

propagation algorithm to iteratively refine partitioning recommendations, minimizing inter-

service coupling and addressing transactional dependencies. By preventing the creation of

distributed monoliths and reducing the need for distributed transactions, CARGO significantly

improves performance and maintainability. Our evaluation on benchmark Java applications like

Daytrader and JPetStore shows that CARGO outperforms existing tools such as Mono2Micro

and CoGCN, yielding higher cohesion, reduced coupling, improved throughput, lower latency,

and greater transactional purity, positioning it as a robust solution for automating the migration

of monolithic applications to scalable microservice architectures.

Background

Microservice partitioning has gained substantial attention due to its role in improving

scalability, flexibility, and performance in distributed systems. This section delves into

traditional and modern partitioning approaches, emphasizing the transition from call-graph-

65

Journal of Computational Social Dynamics

based methods to system dependency graphs (SDGs). We also highlight advancements in

partitioning strategies that address transactional and performance challenges in microservice

architectures.

Traditional microservice partitioning methods, such as call-graph and control-flow-based

techniques, were originally designed for monolithic applications. These methods rely heavily on

control flow and data dependencies to segment applications into manageable components.

Control-flow graphs, for example, have been widely used in embedded systems to accelerate

specific portions of code through hardware optimizations [7]. While these approaches have

been instrumental in partitioning applications, they face challenges when applied to

microservice architectures due to the high coupling between components, leading to inefficient

partitioning and increased latency in distributed systems [8]. To address this, newer methods,

such as program slicing and dependency analysis, have emerged. These methods aim to create

finer partitions by analyzing data flows and control dependencies at a deeper level [9].

However, these techniques often struggle with scaling to large applications and managing

distributed transactions effectively.

SDGs have been introduced as an evolution of traditional dependency graphs, allowing for a

more detailed representation of an application's structure. SDGs provide a more

comprehensive view of both intra- and inter-service dependencies, enabling more efficient

microservice partitioning [10]. In the context of microservice architectures, SDGs map the

interactions between services, facilitating the identification of critical services and their

dependencies [11]. This reduces the risk of creating distributed monoliths—systems that

appear to be microservices but exhibit the same coupling issues as monoliths, resulting in

suboptimal performance [12]. Research on SDG-based partitioning has shown promising results

in optimizing both system performance and scalability. For instance, the CARGO framework

demonstrated significant improvements in reducing transactional overheads and increasing

throughput in Java EE applications [10]. This methodology also extends to optimizing system

performance by automating transaction management in distributed systems [13].

Recent advancements in partitioning methods have incorporated AI-driven approaches to

refine the process further. Machine learning algorithms and context-sensitive analysis are used

to adapt partitions dynamically based on system demands and network conditions [14]. These

techniques allow for more efficient resource utilization and minimize downtime during

partitioning, particularly in large-scale distributed systems [15] Furthermore, studies have

shown that applying dependency logging techniques in multi-node systems can significantly

improve the efficiency of transaction management, reducing the complexity of distributed

transactions and enhancing fault tolerance [16]. In this context, partitioning methods are

increasingly relying on graph-based analysis to improve the accuracy and efficiency of the

partitioning process [17] These advancements offer a glimpse into the future of microservice

partitioning, where automated, AI-driven approaches will likely become the standard for

optimizing the performance and scalability of distributed systems [18]. In addition to these,

advancements in neuromorphic AI integration in distributed systems are also contributing to

partitioning techniques. Neuromorphic systems, with their brain-inspired architecture, offer a

highly resource-efficient solution to handle the increasing complexity in data generation from

cyber-physical systems. The integration of AI-driven approaches to enhance resource

allocation, dependency analysis, and performance efficiency in distributed systems. One of the

66

Journal of Computational Social Dynamics

notable advancements is the CARGO framework, which introduces a context-sensitive label

propagation algorithm designed to refine the partitioning quality of monolithic applications into

microservices [10]. CARGO has proven to improve partition quality by significantly reducing

distributed transactions and lowering system latency. Similarly, dependency-aware

microservice deployment and resource allocation approaches have gained traction, optimizing

deployment strategies based on interaction dependencies between microservices, which

further reduces computation and transmission delays in distributed edge networks.

Methodology

This section presents the CARGO framework and its core algorithm, context-sensitive label

propagation (LPA), for enhancing the partitioning of monolithic applications into microservices.

CARGO leverages a System Dependency Graph (SDG) to model the intricate relationships

between different components of the system, including data, heap, control, and transactional

dependencies. The methodology is structured in three key phases: (i) the construction of the

SDG, (ii) context-sensitive label propagation (LPA), and (iii) refinement and evaluation of

microservice partitioning.

System Dependency Graph Construction

The SDG is a directed graph (,)G V E= , where V represents the set of nodes (such as classes,

methods, and database entities), and E represents the set of edges (such as call-return, data

dependencies, heap dependencies, and transactional interactions). The SDG captures both

intra- and inter-procedural relationships, enabling a more detailed representation of the system

than traditional call graphs or control-flow graphs.

Figure 1 System Dependency Graph (SDG) illustrating Application, Middleware, and Data layers. The graph depicts
the interactions between services (ServiceA, ServiceB, and ServiceC) and their corresponding data access points (DB1,
DB2, DB3). Each service interacts with objects or database operations, showcasing the flow of dependencies within
the system. This visualization is useful for identifying potential bottlenecks and understanding the system's
transactional flow.

67

Journal of Computational Social Dynamics

Nodes and Edges

- Nodes V Nodes represent various entities within the application, including:

 - Methods (M): Individual functions or procedures within the system.

 - Database Tables (D): Representations of transactional dependencies between services.

 - Heap Objects (H): Objects allocated and shared between different components.

- Edges E: Different types of edges represent the various relationships between the nodes:

 - Call-Return Edges
callE : Denote method invocations between different classes or services.

 - Data Dependencies
dataE : Capture the flow of data between different methods and database

interactions.

 - Heap Dependencies heapE : Represent shared objects or references passed between methods

or classes.

 - Transactional Dependencies
transE : Capture interactions between methods and database

tables, representing transactional operations like reads or writes. Mathematically, the SDG can

be represented as:

 call data heap trans(,) where ,G V E V M D H E E E E E= = =
(1)

Each edge is qualified with a context-sensitive identifier, distinguishing different invocations of

the same method depending on the context in which it is called.

Context-Sensitive Label Propagation (LPA)

Once the SDG is constructed, the next step is to apply the context-sensitive label propagation

algorithm to identify optimal partitions. The goal of LPA is to group nodes that are functionally

related and minimize inter-service coupling while maximizing intra-service cohesion.

Label Propagation Algorithm

The basic principle behind label propagation is that nodes within the SDG that are strongly

connected (i.e., share a significant number of edges) should belong to the same microservice

partition. Label propagation is performed iteratively, where each node updates its label based

on the labels of its neighbors until convergence. Define ()l v as the label of node v, representing

its partition assignment. Each node v V iteratively updates its label to match the most

frequent label among its neighbors ()N v . Mathematically, this update rule can be expressed

as:

()

() arg max ((),)l

u N v

l v l u l

= (2)

where (,)x y is the Kronecker delta function, returning 1 if x y= and 0 otherwise. This

process is repeated until the labels converge, meaning no node changes its label during an

iteration.

68

Journal of Computational Social Dynamics

Context Sensitivity

In CARGO, the label propagation is context-sensitive, meaning the relationships between nodes

are qualified by their specific contexts. Let (,)C v u represent the context in which an edge

(,)v u E exists. For example, the context may represent different states of the program at

runtime or different invocation paths of a method. The label propagation algorithm is extended

to operate over these contexts:

(,) (,)

(,) arg max ((,),)l

u c N v c

l v c l u c l

 = (3)

where c and c’ are the contexts associated with the nodes and edges. The algorithm ensures that

labels are propagated in a manner that respects the contextual dependencies between nodes.

Partition Quality Metrics

The effectiveness of the partitions generated by CARGO is evaluated using three key metrics:

cohesion, coupling, and transactional purity.

Cohesion

Cohesion measures how strongly the nodes within the same partition are connected. Let iP

denote a partition, and int ()iE P be the set of edges within partition iP . The cohesion of a

partition
iP is defined as:

 int

int ext

| () |
Cohesion()

| () | | () |

i
i

i i

E P
P

E P E P
=

+
 (4)

where ext ()iE P represents the edges connecting nodes in iP to nodes in other partitions. A

higher cohesion value indicates a more tightly coupled partition.

Coupling

Coupling measures the degree of inter-dependence between different partitions. Let

cross (,)i jE P P denote the set of edges between partition iP and partition jP . The total coupling

between partitions is given by:

cross| (,) |

Coupling()
| |

i j

i j

E P P

P
E

=

(5)

A lower coupling value indicates that the partitions are more independent, which is desirable

for microservices architectures.

Transactional Purity

Transactional purity measures the extent to which each partition interacts with a single

database. Let kD represent a database table, and let iP be a partition that accesses kD . The

transactional purity of a partition is defined as:

Transactional Purity() 1 ({ ()})i i kP H P D= − (6)

69

Journal of Computational Social Dynamics

where H is the entropy function measuring the diversity of database access across partitions. A

purity value of 1.0 indicates that a database is accessed by a single partition, minimizing the

need for distributed transactions.

After the initial partitioning, CARGO iteratively refines the partitions by reapplying the context-

sensitive label propagation over the SDG, ensuring that transactional purity is maximized,

coupling is minimized, and cohesion is enhanced. This iterative process continues until the

partitioning converges or achieves a predefined threshold for the quality metrics.

Comparative Evaluation and Results

In this section, we provide a detailed comparative evaluation of CARGO against other leading

microservice partitioning tools, including Mono2Micro and CoGCN. The evaluation focuses on

key architectural and system performance metrics such as cohesion, coupling, transaction

purity, latency, resource efficiency, scalability, adaptability, and throughput. The robustness of

these systems is further analyzed by examining failure rates and response times under various

workloads. The evaluation was conducted using two benchmark Java applications, Daytrader

and JPetStore, both of which represent complex enterprise-level systems.

Cohesion, Coupling, and Transaction Purity

One of the critical factors in effective microservice partitioning is achieving high cohesion within

each service while minimizing coupling between services. CARGO consistently outperforms

both Mono2Micro and CoGCN in these metrics, as seen in Figure 2. Higher cohesion means that

CARGO produces partitions where components within the same service are more functionally

related, leading to better maintainability and service independence. The lower coupling scores

achieved by CARGO reflect its ability to reduce the dependencies between services, which is

crucial for minimizing communication overhead and ensuring that services can scale and evolve

independently.

Figure 2 Comparative performance of CARGO, Mono2Micro, and CoGCN partitioning tools on key architectural
metrics: Cohesion, Coupling, Transaction Purity, and Latency. CARGO consistently achieves higher cohesion, lower
coupling, better transaction purity, and reduced latency for both Daytrader and JPetStore applications,
demonstrating its effectiveness in creating more modular and efficient microservice architectures.

In addition to cohesion and coupling, transaction purity is a key metric that evaluates the extent

to which partitioning avoids the use of distributed transactions. Distributed transactions can be

costly in terms of performance and complexity. CARGO demonstrates superior transaction

purity, with scores significantly higher than Mono2Micro and CoGCN, as shown in Figure 2. The

framework ensures that the majority of transactions remain within a single service, thus

avoiding the pitfalls associated with distributed transaction management, such as performance

degradation and increased fault-tolerance challenges. Latency is another critical metric,

70

Journal of Computational Social Dynamics

especially in distributed microservice environments where communication overhead between

services can significantly impact response times. CARGO shows a clear advantage over

Mono2Micro and CoGCN in reducing latency, as seen in Figure 2. The improvements in

partitioning reduce inter-service communication, which directly contributes to lower response

times. In real-world applications like Daytrader and JPetStore, the reduction in latency

translates to faster transaction processing and a better end-user experience. Throughput, or

the number of requests a system can handle per second, is another important performance

indicator. CARGO significantly boosts throughput compared to the other tools, particularly in

the Daytrader application (as seen in Figure 3). By optimizing the partition boundaries and

reducing the need for services to frequently interact, CARGO allows the system to handle a

higher volume of requests without bottlenecks. This makes CARGO particularly suitable for

applications that require high concurrency and need to scale efficiently under load.

Resource Efficiency, Scalability, and Adaptability

Effective resource utilization is essential for maintaining system performance, especially as the

number of microservices increases. CARGO demonstrates better resource efficiency across both

applications (Daytrader and JPetStore), as shown in Figure 3. This results from the lower inter-

service communication and more efficient transaction management, which reduce the

overhead typically associated with microservice architectures.

Figure 3 Comparative performance on Resource Efficiency, Scalability, Adaptability, and Throughput for Daytrader
and JPetStore. CARGO shows superior resource utilization, better scalability under load, higher adaptability, and a
significant throughput advantage, especially in the Daytrader application.

In terms of scalability, CARGO's partitioning scheme allows for better performance under high

load conditions. The scalable nature of CARGO’s architecture ensures that as the system grows

and the number of transactions increases, the system can handle additional loads without a

corresponding increase in response time or failure rate. Adaptability, or the system’s ability to

adjust to changing workloads and operational conditions, is also improved with CARGO. The

context-sensitive partitioning approach ensures that the microservice boundaries remain

robust and effective even as the system dynamically adjusts to different usage patterns, as seen

in Figure 3.

Failure Rate and Response Time

Figure 4 provides a comprehensive analysis of failure rates and response times for Daytrader

and JPetStore under varying loads. CARGO consistently maintains lower failure rates compared

to Mono2Micro and CoGCN, especially under high load conditions. This indicates that CARGO

partitions are more robust and less prone to failure when the system is subjected to stress.

Furthermore, response times for CARGO remain competitive, even as the system handles

71

Journal of Computational Social Dynamics

increasing transaction volumes. This shows that CARGO’s microservice partitions are more

resilient and capable of sustaining high performance under pressure.

The combination of lower failure rates and reduced response times is critical for systems that

require high availability and reliability, such as financial trading platforms and e-commerce

systems. In the Daytrader application, for example, CARGO manages to keep the failure rate

below 0.04%, even as response times hover between 50ms and 65ms. Similarly, in JPetStore,

failure rates remain low, and response times stay within an optimal range, demonstrating the

effectiveness of CARGO in handling real-world workloads.

Figure 4 Failure rate versus response time for Daytrader and JPetStore applications under CARGO partitioning. CARGO
maintains lower failure rates and competitive response times across a wide range of system loads, demonstrating
robust performance and reliability in handling high transaction volumes.

Conclusion and Future Work

This paper introduced CARGO, an AI-driven framework leveraging System Dependency Graphs

(SDGs) and a novel context-sensitive label propagation algorithm to enhance the partitioning of

monolithic applications into microservices. Through comprehensive evaluations using

benchmark applications such as Daytrader and JPetStore, CARGO demonstrated its superiority

over existing tools like Mono2Micro and CoGCN across key metrics including cohesion, coupling,

transaction purity, latency, and throughput. The framework successfully mitigates the creation

of distributed monoliths and reduces the reliance on costly distributed transactions, ensuring

more modular, efficient, and scalable microservice architectures.

Looking ahead, several opportunities exist to extend this work. Future research could explore

the application of CARGO to other programming environments, such as Python and .NET, where

monolithic architectures are also prevalent. This would require adapting the SDG construction

and context-sensitive label propagation mechanisms to suit the specific characteristics and

runtime behaviors of these ecosystems. Additionally, integrating machine learning-based

optimization techniques to further automate the partitioning process could enhance

adaptability and performance, making the framework applicable to a broader range of

enterprise applications. Lastly, investigating the integration of CARGO with cloud-native

orchestration tools and frameworks could further streamline the deployment of refined

microservice architectures in real-world, dynamic environments.

72

Journal of Computational Social Dynamics

REFERENCE

[1] R. Alboqmi, S. Jahan, and R. F. Gamble, “Toward enabling self-protection in the service
mesh of the microservice architecture,” in 2022 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), CA, USA, 2022.

[2] A. El Malki and U. Zdun, “Evaluation of API request bundling and its impact on performance
of microservice architectures,” in 2021 IEEE International Conference on Services
Computing (SCC), Chicago, IL, USA, 2021.

[3] M. Seedat, Q. Abbas, and N. Ahmad, “Systematic mapping of monolithic applications to
microservices architecture,” Research Square, 25-Aug-2022.

[4] M. Driss, D. Hasan, W. Boulila, and J. Ahmad, “Microservices in IoT security: Current
solutions, research challenges, and future directions,” arXiv [cs.CR], 17-May-2021.

[5] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li, “Microservices: architecture, container,
and challenges,” in 2020 IEEE 20th International Conference on Software Quality, Reliability
and Security Companion (QRS-C), Macau, China, 2020.

[6] T. Cerny et al., “On code analysis opportunities and challenges for enterprise systems and
microservices,” IEEE Access, vol. 8, pp. 159449–159470, 2020.

[7] H. Noori, F. Mehdipour, M. S. Zamani, K. Inoue, and K. Murakami, “Handling control data
flow graphs for a tightly coupled reconfigurable accelerator,” in Embedded Software and
Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 249–260.

[8] V. Arora, R. Kumar Bhatia, and M. Singh, “Evaluation of flow graph and dependence graphs
for program representation,” Int. J. Comput. Appl., vol. 56, no. 14, pp. 18–23, Oct. 2012.

[9] S. Sinha, M. J. Harrold, and G. Rothermel, “System-dependence-graph-based slicing of
programs with arbitrary interprocedural control flow,” in Proceedings of the 1999
International Conference on Software Engineering (IEEE Cat. No.99CB37002), Los Angeles,
CA, USA, 2003.

[10] V. Nitin, S. Asthana, B. Ray, and R. Krishna, “CARGO: AI-guided dependency analysis for
migrating monolithic applications to microservices Architecture,” arXiv [cs.SE], 24-Jul-
2022.

[11] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh, “Using service
dependency graph to analyze and test microservices,” in 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), Tokyo, Japan, 2018.

[12] S. Luo et al., “Characterizing microservice dependency and performance,” in Proceedings
of the ACM Symposium on Cloud Computing, Seattle WA USA, 2021.

[13] C. Yao, M. Zhang, Q. Lin, B. C. Ooi, and J. Xu, “Scaling distributed transaction processing
and recovery based on dependency logging,” VLDB J., vol. 27, no. 3, pp. 347–368, Jun.
2018.

[14] M. Sangeetha, J. R. Perinbam, and Revathy, “Hardware Estimation and Synthesis for a
Codesign System,” in 2007 International Conference on Signal Processing, Communications
and Networking, Chennai, India, 2007.

[15] J.-P. Kim and J.-E. Hong, “A partition technique of UML-based software models for multi-
processor embedded systems,” KIPS Trans. PartD, vol. 15D, no. 1, pp. 87–98, Feb. 2008.

[16] S. Malekshahi, M. Sedghi, and Z. Navabi, “Automating Hardware/Software partitioning
using dependency Graph,” in Proceedings of IEEE East-West Design & Test Symposium
(EWDTS’08), Lviv, Ukraine, 2008.

[17] G. Gill, R. Dathathri, L. Hoang, and K. Pingali, “A study of partitioning policies for graph
analytics on large-scale distributed platforms,” Proceedings VLDB Endowment, vol. 12, no.
4, pp. 321–334, Dec. 2018.

[18] S. Liu, G. Tan, and T. Jaeger, “PtrSplit,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, Dallas Texas USA, 2017.

73

Journal of Computational Social Dynamics

