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             Abstract 
Microservice Architecture (MSA) has become a standard for designing scalable and flexible 
enterprise applications. However, the process of migrating monolithic systems to 
microservices is fraught with challenges, including the risk of creating distributed monoliths 
and managing complex distributed transactions. To address these issues, we present 
CARGO (Context-sensitive lAbel pRopaGatiOn), an AI-guided framework that improves 
microservice partitioning through the use of System Dependency Graphs (SDGs) and a 
context-sensitive label propagation algorithm. SDGs enable detailed modeling of both 
intra-service and inter-service dependencies, capturing critical aspects like call-return, 
data, heap, and transactional edges. By iteratively refining partition boundaries, CARGO 
minimizes inter-service coupling, reduces the occurrence of distributed transactions, and 
enhances service cohesion. Evaluations conducted on benchmark applications such as 
Daytrader and JPetStore demonstrate that CARGO significantly outperforms state-of-the-
art tools like Mono2Micro and CoGCN in terms of transaction purity, latency, throughput, 
and architectural quality. This work establishes a foundation for automating the migration 
of monolithic applications into efficient, scalable microservice architectures and opens 
avenues for applying CARGO to other programming environments like Python and .NET. 
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Introduction 
Microservice architecture (MSA) has emerged as a transformative approach for the design and 

development of enterprise applications, offering significant benefits over traditional monolithic 

architectures. By decomposing a system into a set of loosely coupled, independently deployable 

services, MSA enhances scalability, facilitates agile development, and improves fault isolation. 

Each microservice can evolve independently, be deployed separately, and scale according to 

the specific needs of the functionality it provides. For large-scale, cloud-native applications, 

microservice architecture is particularly advantageous, allowing organizations to meet the 

growing demands of flexibility, performance, and rapid iteration in software development [1], 

[2]. 
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Despite the advantages of MSA, migrating legacy monolithic applications to a microservice-

based architecture presents substantial challenges. Monolithic systems typically consist of 

highly interdependent components, where functionalities and data flows are intertwined. 

Manually partitioning these systems into microservices is a complex, time-consuming process 

that is prone to error [3]. One of the significant risks during this migration process is the creation 

of a distributed monolith—an architecture in which services are deployed independently but 

remain tightly coupled through frequent inter-service communication, resulting in performance 

inefficiencies and operational complexity. Distributed monoliths often negate the intended 

benefits of microservices by introducing new bottlenecks in terms of scalability, fault tolerance, 

and maintainability. Another key challenge in microservice partitioning is the management of 

transactional boundaries [4]. Monolithic applications often rely on centralized, transactional 

databases, where consistency and integrity are maintained through strong ACID guarantees. 

When transitioning to microservices, maintaining these guarantees across distributed services 

can necessitate the use of distributed transactions, such as two-phase commits. Distributed 

transactions are not only complex to implement and manage, but they also introduce 

performance overheads and potential consistency issues. Thus, one of the critical objectives in 

effective microservice partitioning is to minimize the need for such transactions while 

preserving the integrity of business processes. 

Traditional approaches to microservice partitioning rely on program analysis techniques such 

as call-graph and control-flow graph representations, which identify functional boundaries 

based on the interaction patterns within the code. These techniques, while useful, are often 

limited by their inability to account for critical dependencies, such as database interactions and 

indirect method calls. As a result, these methods may produce partitioning recommendations 

that either create distributed monoliths or require extensive use of distributed transactions [5], 

[6].  

To address the limitations of traditional microservice partitioning methods, we propose the use 

of System Dependency Graphs (SDGs), which provide a more detailed and expressive 

representation of an application's structure by capturing not only call-return and control-flow 

relationships but also data, heap, and transactional dependencies. This allows for a more 

accurate modeling of complex inter-component relationships in monolithic applications, 

resulting in more effective microservice partitioning. We introduce CARGO (Context-sensitive 

lAbel pRopaGatiOn), an AI-driven framework that utilizes a novel context-sensitive label 

propagation algorithm to iteratively refine partitioning recommendations, minimizing inter-

service coupling and addressing transactional dependencies. By preventing the creation of 

distributed monoliths and reducing the need for distributed transactions, CARGO significantly 

improves performance and maintainability. Our evaluation on benchmark Java applications like 

Daytrader and JPetStore shows that CARGO outperforms existing tools such as Mono2Micro 

and CoGCN, yielding higher cohesion, reduced coupling, improved throughput, lower latency, 

and greater transactional purity, positioning it as a robust solution for automating the migration 

of monolithic applications to scalable microservice architectures. 

Background 

Microservice partitioning has gained substantial attention due to its role in improving 

scalability, flexibility, and performance in distributed systems. This section delves into 

traditional and modern partitioning approaches, emphasizing the transition from call-graph-



 

65 

Journal of Computational Social Dynamics 

 

based methods to system dependency graphs (SDGs). We also highlight advancements in 

partitioning strategies that address transactional and performance challenges in microservice 

architectures. 

Traditional microservice partitioning methods, such as call-graph and control-flow-based 

techniques, were originally designed for monolithic applications. These methods rely heavily on 

control flow and data dependencies to segment applications into manageable components. 

Control-flow graphs, for example, have been widely used in embedded systems to accelerate 

specific portions of code through hardware optimizations [7]. While these approaches have 

been instrumental in partitioning applications, they face challenges when applied to 

microservice architectures due to the high coupling between components, leading to inefficient 

partitioning and increased latency in distributed systems [8]. To address this, newer methods, 

such as program slicing and dependency analysis, have emerged. These methods aim to create 

finer partitions by analyzing data flows and control dependencies at a deeper level [9]. 

However, these techniques often struggle with scaling to large applications and managing 

distributed transactions effectively. 

SDGs have been introduced as an evolution of traditional dependency graphs, allowing for a 

more detailed representation of an application's structure. SDGs provide a more 

comprehensive view of both intra- and inter-service dependencies, enabling more efficient 

microservice partitioning [10]. In the context of microservice architectures, SDGs map the 

interactions between services, facilitating the identification of critical services and their 

dependencies [11]. This reduces the risk of creating distributed monoliths—systems that 

appear to be microservices but exhibit the same coupling issues as monoliths, resulting in 

suboptimal performance [12]. Research on SDG-based partitioning has shown promising results 

in optimizing both system performance and scalability. For instance, the CARGO framework 

demonstrated significant improvements in reducing transactional overheads and increasing 

throughput in Java EE applications [10]. This methodology also extends to optimizing system 

performance by automating transaction management in distributed systems [13]. 

Recent advancements in partitioning methods have incorporated AI-driven approaches to 

refine the process further. Machine learning algorithms and context-sensitive analysis are used 

to adapt partitions dynamically based on system demands and network conditions [14]. These 

techniques allow for more efficient resource utilization and minimize downtime during 

partitioning, particularly in large-scale distributed systems [15] Furthermore, studies have 

shown that applying dependency logging techniques in multi-node systems can significantly 

improve the efficiency of transaction management, reducing the complexity of distributed 

transactions and enhancing fault tolerance [16]. In this context, partitioning methods are 

increasingly relying on graph-based analysis to improve the accuracy and efficiency of the 

partitioning process [17] These advancements offer a glimpse into the future of microservice 

partitioning, where automated, AI-driven approaches will likely become the standard for 

optimizing the performance and scalability of distributed systems [18]. In addition to these, 

advancements in neuromorphic AI integration in distributed systems are also contributing to 

partitioning techniques. Neuromorphic systems, with their brain-inspired architecture, offer a 

highly resource-efficient solution to handle the increasing complexity in data generation from 

cyber-physical systems. The integration of AI-driven approaches to enhance resource 

allocation, dependency analysis, and performance efficiency in distributed systems. One of the 



 

66 

Journal of Computational Social Dynamics 

 

notable advancements is the CARGO framework, which introduces a context-sensitive label 

propagation algorithm designed to refine the partitioning quality of monolithic applications into 

microservices [10]. CARGO has proven to improve partition quality by significantly reducing 

distributed transactions and lowering system latency. Similarly, dependency-aware 

microservice deployment and resource allocation approaches have gained traction, optimizing 

deployment strategies based on interaction dependencies between microservices, which 

further reduces computation and transmission delays in distributed edge networks. 

Methodology 

This section presents the CARGO framework and its core algorithm, context-sensitive label 

propagation (LPA), for enhancing the partitioning of monolithic applications into microservices. 

CARGO leverages a System Dependency Graph (SDG) to model the intricate relationships 

between different components of the system, including data, heap, control, and transactional 

dependencies. The methodology is structured in three key phases: (i) the construction of the 

SDG, (ii) context-sensitive label propagation (LPA), and (iii) refinement and evaluation of 

microservice partitioning. 

System Dependency Graph Construction 

The SDG is a directed graph ( , )G V E= , where V represents the set of nodes (such as classes, 

methods, and database entities), and E represents the set of edges (such as call-return, data 

dependencies, heap dependencies, and transactional interactions). The SDG captures both 

intra- and inter-procedural relationships, enabling a more detailed representation of the system 

than traditional call graphs or control-flow graphs. 

 

Figure 1 System Dependency Graph (SDG) illustrating Application, Middleware, and Data layers. The graph depicts 
the interactions between services (ServiceA, ServiceB, and ServiceC) and their corresponding data access points (DB1, 
DB2, DB3). Each service interacts with objects or database operations, showcasing the flow of dependencies within 
the system. This visualization is useful for identifying potential bottlenecks and understanding the system's 
transactional flow. 
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Nodes and Edges 

- Nodes V  Nodes represent various entities within the application, including: 

  - Methods (M): Individual functions or procedures within the system. 

  - Database Tables (D): Representations of transactional dependencies between services. 

  - Heap Objects (H): Objects allocated and shared between different components. 

- Edges E: Different types of edges represent the various relationships between the nodes: 

  - Call-Return Edges 
callE : Denote method invocations between different classes or services. 

  - Data Dependencies 
dataE : Capture the flow of data between different methods and database 

interactions. 

  - Heap Dependencies heapE : Represent shared objects or references passed between methods 

or classes. 

  - Transactional Dependencies 
transE : Capture interactions between methods and database 

tables, representing transactional operations like reads or writes. Mathematically, the SDG can 

be represented as: 

 

 call data heap trans( , ) where ,G V E V M D H E E E E E= =   =     
(1)   

Each edge is qualified with a context-sensitive identifier, distinguishing different invocations of 

the same method depending on the context in which it is called. 

Context-Sensitive Label Propagation (LPA) 

Once the SDG is constructed, the next step is to apply the context-sensitive label propagation 

algorithm to identify optimal partitions. The goal of LPA is to group nodes that are functionally 

related and minimize inter-service coupling while maximizing intra-service cohesion. 

Label Propagation Algorithm 

The basic principle behind label propagation is that nodes within the SDG that are strongly 

connected (i.e., share a significant number of edges) should belong to the same microservice 

partition. Label propagation is performed iteratively, where each node updates its label based 

on the labels of its neighbors until convergence. Define ( )l v  as the label of node v, representing 

its partition assignment. Each node v V  iteratively updates its label to match the most 

frequent label among its neighbors ( )N v . Mathematically, this update rule can be expressed 

as: 

( )

( ) arg max ( ( ), )l

u N v

l v l u l



=   (2)   

where ( , )x y  is the Kronecker delta function, returning 1 if x y=  and 0 otherwise. This 

process is repeated until the labels converge, meaning no node changes its label during an 

iteration. 
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Context Sensitivity 

In CARGO, the label propagation is context-sensitive, meaning the relationships between nodes 

are qualified by their specific contexts. Let ( , )C v u  represent the context in which an edge 

( , )v u E  exists. For example, the context may represent different states of the program at 

runtime or different invocation paths of a method. The label propagation algorithm is extended 

to operate over these contexts: 

 
( , ) ( , )

( , ) arg max ( ( , ), )l

u c N v c

l v c l u c l

 

 =   (3)   

where c and c’ are the contexts associated with the nodes and edges. The algorithm ensures that 

labels are propagated in a manner that respects the contextual dependencies between nodes. 

Partition Quality Metrics 

The effectiveness of the partitions generated by CARGO is evaluated using three key metrics: 

cohesion, coupling, and transactional purity. 

Cohesion 

Cohesion measures how strongly the nodes within the same partition are connected. Let iP  

denote a partition, and int ( )iE P  be the set of edges within partition iP . The cohesion of a 

partition 
iP  is defined as: 

 int

int ext

| ( ) |
Cohesion( )

| ( ) | | ( ) |

i
i

i i

E P
P

E P E P
=

+
 (4)   

where ext ( )iE P  represents the edges connecting nodes in iP  to nodes in other partitions. A 

higher cohesion value indicates a more tightly coupled partition. 

Coupling 

Coupling measures the degree of inter-dependence between different partitions. Let 

cross ( , )i jE P P  denote the set of edges between partition iP  and partition jP . The total coupling 

between partitions is given by: 

cross| ( , ) |

Coupling( )
| |

i j

i j

E P P

P
E


=


 

(5)   

A lower coupling value indicates that the partitions are more independent, which is desirable 

for microservices architectures. 

Transactional Purity 

Transactional purity measures the extent to which each partition interacts with a single 

database. Let kD  represent a database table, and let iP  be a partition that accesses kD . The 

transactional purity of a partition is defined as: 

Transactional Purity( ) 1 ({ ( )})i i kP H P D= −  (6)   
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where H is the entropy function measuring the diversity of database access across partitions. A 

purity value of 1.0 indicates that a database is accessed by a single partition, minimizing the 

need for distributed transactions. 

After the initial partitioning, CARGO iteratively refines the partitions by reapplying the context-

sensitive label propagation over the SDG, ensuring that transactional purity is maximized, 

coupling is minimized, and cohesion is enhanced. This iterative process continues until the 

partitioning converges or achieves a predefined threshold for the quality metrics. 

Comparative Evaluation and Results 

In this section, we provide a detailed comparative evaluation of CARGO against other leading 

microservice partitioning tools, including Mono2Micro and CoGCN. The evaluation focuses on 

key architectural and system performance metrics such as cohesion, coupling, transaction 

purity, latency, resource efficiency, scalability, adaptability, and throughput. The robustness of 

these systems is further analyzed by examining failure rates and response times under various 

workloads. The evaluation was conducted using two benchmark Java applications, Daytrader 

and JPetStore, both of which represent complex enterprise-level systems. 

Cohesion, Coupling, and Transaction Purity 

One of the critical factors in effective microservice partitioning is achieving high cohesion within 

each service while minimizing coupling between services. CARGO consistently outperforms 

both Mono2Micro and CoGCN in these metrics, as seen in Figure 2. Higher cohesion means that 

CARGO produces partitions where components within the same service are more functionally 

related, leading to better maintainability and service independence. The lower coupling scores 

achieved by CARGO reflect its ability to reduce the dependencies between services, which is 

crucial for minimizing communication overhead and ensuring that services can scale and evolve 

independently. 

 

Figure 2 Comparative performance of CARGO, Mono2Micro, and CoGCN partitioning tools on key architectural 
metrics: Cohesion, Coupling, Transaction Purity, and Latency. CARGO consistently achieves higher cohesion, lower 
coupling, better transaction purity, and reduced latency for both Daytrader and JPetStore applications, 
demonstrating its effectiveness in creating more modular and efficient microservice architectures. 

In addition to cohesion and coupling, transaction purity is a key metric that evaluates the extent 

to which partitioning avoids the use of distributed transactions. Distributed transactions can be 

costly in terms of performance and complexity. CARGO demonstrates superior transaction 

purity, with scores significantly higher than Mono2Micro and CoGCN, as shown in Figure 2. The 

framework ensures that the majority of transactions remain within a single service, thus 

avoiding the pitfalls associated with distributed transaction management, such as performance 

degradation and increased fault-tolerance challenges. Latency is another critical metric, 
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especially in distributed microservice environments where communication overhead between 

services can significantly impact response times. CARGO shows a clear advantage over 

Mono2Micro and CoGCN in reducing latency, as seen in Figure 2. The improvements in 

partitioning reduce inter-service communication, which directly contributes to lower response 

times. In real-world applications like Daytrader and JPetStore, the reduction in latency 

translates to faster transaction processing and a better end-user experience. Throughput, or 

the number of requests a system can handle per second, is another important performance 

indicator. CARGO significantly boosts throughput compared to the other tools, particularly in 

the Daytrader application (as seen in Figure 3). By optimizing the partition boundaries and 

reducing the need for services to frequently interact, CARGO allows the system to handle a 

higher volume of requests without bottlenecks. This makes CARGO particularly suitable for 

applications that require high concurrency and need to scale efficiently under load. 

Resource Efficiency, Scalability, and Adaptability 

Effective resource utilization is essential for maintaining system performance, especially as the 

number of microservices increases. CARGO demonstrates better resource efficiency across both 

applications (Daytrader and JPetStore), as shown in Figure 3. This results from the lower inter-

service communication and more efficient transaction management, which reduce the 

overhead typically associated with microservice architectures. 

 

Figure 3 Comparative performance on Resource Efficiency, Scalability, Adaptability, and Throughput for Daytrader 
and JPetStore. CARGO shows superior resource utilization, better scalability under load, higher adaptability, and a 
significant throughput advantage, especially in the Daytrader application. 

In terms of scalability, CARGO's partitioning scheme allows for better performance under high 

load conditions. The scalable nature of CARGO’s architecture ensures that as the system grows 

and the number of transactions increases, the system can handle additional loads without a 

corresponding increase in response time or failure rate. Adaptability, or the system’s ability to 

adjust to changing workloads and operational conditions, is also improved with CARGO. The 

context-sensitive partitioning approach ensures that the microservice boundaries remain 

robust and effective even as the system dynamically adjusts to different usage patterns, as seen 

in Figure 3. 

Failure Rate and Response Time 

Figure 4 provides a comprehensive analysis of failure rates and response times for Daytrader 

and JPetStore under varying loads. CARGO consistently maintains lower failure rates compared 

to Mono2Micro and CoGCN, especially under high load conditions. This indicates that CARGO 

partitions are more robust and less prone to failure when the system is subjected to stress. 

Furthermore, response times for CARGO remain competitive, even as the system handles 
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increasing transaction volumes. This shows that CARGO’s microservice partitions are more 

resilient and capable of sustaining high performance under pressure. 

The combination of lower failure rates and reduced response times is critical for systems that 

require high availability and reliability, such as financial trading platforms and e-commerce 

systems. In the Daytrader application, for example, CARGO manages to keep the failure rate 

below 0.04%, even as response times hover between 50ms and 65ms. Similarly, in JPetStore, 

failure rates remain low, and response times stay within an optimal range, demonstrating the 

effectiveness of CARGO in handling real-world workloads. 

 

Figure 4 Failure rate versus response time for Daytrader and JPetStore applications under CARGO partitioning. CARGO 
maintains lower failure rates and competitive response times across a wide range of system loads, demonstrating 
robust performance and reliability in handling high transaction volumes. 

Conclusion and Future Work 

This paper introduced CARGO, an AI-driven framework leveraging System Dependency Graphs 

(SDGs) and a novel context-sensitive label propagation algorithm to enhance the partitioning of 

monolithic applications into microservices. Through comprehensive evaluations using 

benchmark applications such as Daytrader and JPetStore, CARGO demonstrated its superiority 

over existing tools like Mono2Micro and CoGCN across key metrics including cohesion, coupling, 

transaction purity, latency, and throughput. The framework successfully mitigates the creation 

of distributed monoliths and reduces the reliance on costly distributed transactions, ensuring 

more modular, efficient, and scalable microservice architectures. 

Looking ahead, several opportunities exist to extend this work. Future research could explore 

the application of CARGO to other programming environments, such as Python and .NET, where 

monolithic architectures are also prevalent. This would require adapting the SDG construction 

and context-sensitive label propagation mechanisms to suit the specific characteristics and 

runtime behaviors of these ecosystems. Additionally, integrating machine learning-based 

optimization techniques to further automate the partitioning process could enhance 

adaptability and performance, making the framework applicable to a broader range of 

enterprise applications. Lastly, investigating the integration of CARGO with cloud-native 

orchestration tools and frameworks could further streamline the deployment of refined 

microservice architectures in real-world, dynamic environments. 
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