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             Abstract 
This paper addresses the challenges inherent in optimizing Quadratic Unconstrained Binary 
Optimization (QUBO) formulations for quantum annealing, particularly focusing on the 
trade-off between solution quality and qubit usage. As quantum annealers such as those 
developed by D-Wave and Qilimanjaro offer a promising approach to solving NP-complete 
problems, effective QUBO formulations are critical for leveraging their computational 
power. We propose two novel methods—the Adaptive Pruning Technique and the Hybrid 
Heuristic-QA Approach—that aim to reduce the number of qubits required while 
maintaining high solution quality. Through rigorous theoretical analysis and extensive 
experimentation using both quantum hardware and classical simulators, we demonstrate 
that these methods can significantly enhance qubit efficiency without compromising the 
accuracy of solutions. Our findings indicate that the Adaptive Pruning Technique can 
achieve up to a 25% reduction in qubit usage, while the Hybrid Heuristic-QA Approach 
offers reductions of up to 50%, particularly for larger problem instances. These 
advancements not only contribute to the theoretical understanding of QUBO optimization 
but also provide practical strategies for enhancing the performance of quantum annealers 
in real-world applications. 

Introduction 
The class of NP-complete problems encompasses some of the most challenging computational 

tasks, where the difficulty of finding exact solutions grows exponentially with the size of the 

input [1]. These problems are ubiquitous in various industrial and scientific domains, ranging 

from optimization in logistics to complex network design. Traditional classical algorithms often 

resort to heuristics or approximations to tackle these problems, sacrificing precision for 

computational feasibility. However, as quantum computing technologies have advanced, 

particularly in the form of quantum annealers, new avenues have opened up for addressing NP-

complete problems more efficiently [2], [3]. Quantum annealing, a quantum computational 

technique designed to find the global minimum of a given objective function, inherently 

operates by solving problems cast in the form of Quadratic Unconstrained Binary Optimization 

(QUBO) formulations. The transformation of NP-complete problems into QUBO form allows 

them to be directly processed by quantum annealers, leveraging quantum mechanical 

phenomena to explore solution spaces that are infeasible for classical algorithms [4]. 

Despite the potential of quantum annealers to address complex optimization problems, the 

practical application of QUBO formulations presents significant challenges. One of the primary 

issues is the trade-off between solution quality and the number of qubits required for 
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computation. Quantum annealers, like the D-Wave and Qilimanjaro system, have a limited 

number of qubits, which constrains the size of problems they can effectively handle [5]. This 

limitation is exacerbated when the problem's QUBO formulation is dense or highly 

interconnected, requiring a larger number of qubits than are available [6]. Consequently, 

achieving high-quality solutions often necessitates the use of more qubits, leading to a situation 

where only smaller problem instances can be practically addressed. The work by Sax et al. 

explores these challenges, demonstrating that while QUBO approximations can reduce qubit 

usage, they often do so at the cost of solution quality [7].The authors illustrate that current 

approximation methods, while effective in some contexts, do not fully exploit the potential of 

quantum annealing, especially when balancing between the competing demands of qubit 

efficiency and solution accuracy. 

The primary objective of this research is to explore and propose novel methods for optimizing 

QUBO formulations, aiming to achieve a more effective balance between solution quality and 

qubit usage. By introducing new approximation strategies and enhancing existing techniques, 

this work seeks to push the boundaries of what is currently possible with quantum annealing. 

The focus is not only on improving solution quality while managing qubit constraints but also 

on ensuring that these methods are scalable and applicable to a broader range of problem sizes 

and types. This research aims to bridge the gap between the theoretical potential of quantum 

annealing and its practical implementation, particularly in the context of solving large-scale NP-

complete problems. 

This paper advances the field of quantum computing by proposing and rigorously evaluating 

novel methods for QUBO approximation that aim to optimize qubit usage without 

compromising solution quality. These methods are thoroughly tested for scalability across 

various quantum devices, including D-Wave and Qilimanjaro's quantum annealers, as well as 

classical simulators. By benchmarking the performance of these new methods against existing 

approaches, this research provides critical insights into the trade-offs inherent in QUBO 

formulation. The findings offer valuable guidelines for practitioners seeking to maximize the 

potential of quantum annealing in practical, real-world applications. Ultimately, this work 

contributes to the broader goal of harnessing quantum computing to effectively solve NP-

complete problems, thereby moving closer to realizing quantum computing as a practical tool 

for tackling complex computational challenges. 

Literature Review 

QUBO Formulations 

Quadratic Unconstrained Binary Optimization (QUBO) formulations are central to the effective 

use of quantum annealing, a promising method for solving complex combinatorial optimization 

problems. Recent advancements in this area have explored various methods for improving the 

efficiency and applicability of QUBO formulations in different contexts. The work by Julio Auto 

and Fred Shi [8], emphasizes the importance of selecting appropriate problem formulations, 

noting that the way a problem is modeled significantly affects the performance of quantum 

annealers. This observation aligns with research by Carla Silva et al. who demonstrated that 

mapping graph coloring problems into QUBO formulations can be effectively solved using 

quantum annealing, highlighting the versatility of these formulations in handling complex 

combinatorial problems [9]. 
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Further advancing the field, S. Park et al. [10], simplified QUBO formulations for systems of 

linear equations by leveraging matrix congruence, which enhances computational efficiency 

over classical methods such as QR and SVD decomposition. This approach is particularly 

valuable for large-scale problems where classical methods may struggle. Meanwhile, H. Djidjev 

[11] introduced an automaton-based methodology to implement optimization constraints 

within QUBO formulations, which reduces the number of qubits required—a critical 

consideration given the current limitations of quantum hardware. 

Building on these foundational methods, Djidjev's subsequent work tackled the challenge of 

incorporating inequality constraints into QUBO formulations, particularly in the context of the 

set cover problem (SCP) [12]. The introduction of augmented Lagrangian and higher-order 

binary optimization (HUBO) methods provided novel solutions that outperform standard 

approaches, though the scalability of these methods remains an area for further research. 

Moreover, Catherine F. Higham et al. [13] tested a QUBO formulation for core-periphery 

partitioning on D-Wave and Qilimanjaro’s quantum annealer, illustrating the practical 

application of these formulations in optimizing network structures. Their findings underscore 

the potential of quantum annealing to solve real-world problems more efficiently than 

traditional heuristic methods. Additionally, the work by William Cruz-Santos et al. [5] on the 

Minimum Multicut Problem further underscores the growing interest in applying QUBO 

formulations to a wide range of theoretical and practical challenges in computer science. 

Approximation Techniques 

Approximation techniques are widely used in optimization to manage computational 

complexity, particularly in high-dimensional and complex problem spaces. These techniques 

create surrogate models that are less computationally expensive than the original problem, 

allowing for more efficient exploration of the solution space. Methods such as response surface 

approximations and kriging are commonly employed for this purpose, as they provide global 

approximations that are useful in various engineering applications [14]. Sequential 

approximation techniques have been developed to improve accuracy iteratively, as seen in the 

work on multi-objective optimization [15]. However, these methods often struggle with 

balancing accuracy and computational efficiency, a challenge particularly evident in the 

management of high-fidelity models [16]. The robustness of stochastic approximation methods 

has been explored, with some approaches showing significant promise in convex stochastic 

problems [17]. In summary, while approximation techniques significantly reduce the 

computational load, they introduce trade-offs in accuracy, making the choice of technique 

critical depending on the problem context. 

Quantum and Classical Comparisons 

The comparison between quantum annealers and classical solvers has become a significant area 

of research, particularly in the context of handling QUBO formulations. Quantum annealers, 

such as those developed by D-Wave and Qilimanjaro, are specifically designed to solve QUBO 

problems by exploiting quantum tunneling and superposition, potentially offering advantages 

over classical methods. However, the current state of quantum hardware imposes limitations 

on the size and complexity of problems that can be effectively solved [18]. Studies have shown 

that for small problem instances, classical solvers often outperform quantum annealers in terms 

of both speed and accuracy [19]. However, quantum solvers demonstrate significant potential 

when dealing with specially structured problems that fit well with the hardware architecture 
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[9]. The debate continues as to whether quantum annealers can consistently outperform 

classical solvers, especially in general-purpose applications [20], but there is optimism that 

advancements in quantum technology could close the gap in the near future. 

 

Figure 1 Performance vs. Problem Size for Classical Solvers and Quantum Annealers 

Figure 1 illustrates the relationship between problem size and performance for classical solvers 

and quantum annealers. The x-axis represents the problem size, which could be measured in 

terms of the number of variables or the complexity of the problem. The y-axis represents a 

performance metric, which could be related to solution accuracy or computation time (with 

better performance being higher accuracy or lower computation time). 

Methodology 

New QUBO Approximation Methods 

In this study, we introduce several novel methods designed to optimize the balance between 

solution quality and qubit usage in QUBO (Quadratic Unconstrained Binary Optimization) 

formulations. The first method, termed the Adaptive Pruning Technique, focuses on iteratively 

reducing the complexity of the QUBO matrix by systematically pruning less significant non-

diagonal entries. These entries, which represent weaker interactions between variables, are 

identified based on their absolute values. The pruning process begins by removing a small 

percentage of these entries, such as the bottom 5%, and then evaluating the impact on solution 

quality. The key feature of this method is its adaptive threshold, which adjusts dynamically in 

response to the convergence behavior observed in previous iterations. If the solution quality 

remains within an acceptable range after pruning, the threshold for pruning is slightly increased, 

allowing further reduction in qubit usage. Conversely, if the solution quality deteriorates 
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significantly, the process is halted, preserving the balance between qubit efficiency and solution 

accuracy. 

The second method we propose is the Hybrid Heuristic-QA Approach, which combines classical 

heuristic algorithms with quantum annealing to preprocess and simplify the QUBO matrix 

before it is processed by the quantum annealer. This approach leverages classical clustering 

techniques, such as k-means or hierarchical clustering, to identify and group variables within 

the problem space that exhibit strong interdependencies. These clusters are then treated as 

single entities in the initial stages of the quantum annealing process, effectively reducing the 

number of qubits required for computation. Once an initial solution is obtained from the 

quantum annealer, a refinement step follows, where the clusters are re-expanded, and a local 

optimization is performed to fine-tune the solution. This hybrid method not only reduces the 

complexity of the problem handled by the quantum annealer but also enhances the overall 

solution quality by leveraging the strengths of both classical and quantum techniques. 

Theoretical Analysis 

Adaptive Pruning Technique 

The Adaptive Pruning Technique aims to reduce the complexity of a QUBO matrix by selectively 

removing less significant entries while preserving the overall structure of the optimization 

problem. The approach hinges on a systematic analysis of the impact of each entry in the QUBO 

matrix on the solution quality. A QUBO problem is typically represented by an objective function 

of the form: 

 minimize ( ) ,Tf x x Qx=  (1)   

where {0,1}nx  is a vector of binary variables, and Q  is a symmetric matrix of size n n  with 

real-valued entries ijQ . The entries of the QUBO matrix Q encode the linear and quadratic 

terms of the optimization problem. The goal is to find the binary vector *x  that minimizes 

( )f x . 

The pruning strategy begins by identifying and removing the smallest non-diagonal entries in 

the QUBO matrix Q. Let   be the threshold below which entries are considered insignificant. 

At each pruning iteration K, the matrix Q is updated as follows: 

 

( ) ( )

( 1)

( )

0 if | | ,

otherwise.

k k
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ij

Q
Q

Q


+

 
= 


 (2)   

Here, 
( )k  is the adaptive threshold at iteration k which is dynamically adjusted based on the 

observed solution quality. The solution quality is evaluated after each pruning step by computing 

the value of the objective function ( )f x  for the current best solution 
( )kx : 

( ) ( ) ( ) ( ) ( )( ) ( ) .k k k T k kf x x Q x=  (3)   

If the decrease in solution quality 
( ) ( ) ( ) ( 1) ( 1)( ) ( )k k k k kf f x f x− − = −  is within an acceptable 

range  , the threshold 
( 1)k +

 is increased by a factor 1  : 

( 1) ( ).k k + =  (4)   
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Otherwise, the pruning process is halted, preserving the balance between qubit usage and solution 

accuracy. The impact of pruning on the solution quality can be rigorously analyzed using spectral 

properties of the QUBO matrix. Specifically, the eigenvalues of 
( )kQ  are monitored across 

iterations. Let 
( ) ( ) ( )

1 2

k k k

n     be the eigenvalues of 
( )kQ . The preservation of the 

spectral gap 
( ) ( ) ( )

1

k k k

n   = −  is crucial, as it indicates that the quadratic form ( )f x  retains 

its minimization structure despite pruning: 

( 1) ( ).k k +    (5)   

Maintaining a stable spectral gap ensures that the solution quality does not degrade significantly 

as pruning progresses. 

Hybrid Heuristic-QA Approach 

The Hybrid Heuristic-QA Approach combines classical clustering techniques with quantum 

annealing to reduce the effective size of the QUBO problem and enhance the solution quality. 

Given the QUBO matrix Q, the first step is to apply a clustering algorithm to identify groups of 

variables that exhibit strong interactions. Let 
1 2, , , mC C C  be the clusters identified by the 

algorithm, where each cluster 
iC  corresponds to a subset of variables 

iCx x . 

The QUBO matrix is then reordered into a block-diagonal form Q', where each block 

corresponds to the interactions within a cluster: 
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 (6)   

Here, represents the submatrix corresponding to the interactions within cluster 
iC . This block-

diagonalization reduces the number of inter-cluster interactions that the quantum annealer must 

consider, thereby reducing the qubit requirements. 

The quantum annealer solves the reduced QUBO problem corresponding to the block-diagonal 

matrix Q'. The solution x' obtained from the annealer is then refined through a local 

optimization process. Specifically, the variables within each cluster are re-expanded, and a local 

search is performed to adjust the values of 
iCx  to minimize the original QUBO objective 

function: 

*

1

arg min ( ) ( ) .
C i i i i i j ji

m
T T

x C C C C C C C

i i j

x x Q x x Q x
= 

= +   (7)   

This hybrid approach leverages the strength of classical heuristics in reducing problem size and 

the power of quantum annealing in exploring the reduced problem space, thereby achieving a 

balance between qubit usage and solution quality. the effectiveness of the Hybrid Heuristic-QA 

Approach is rooted in the divide-and-conquer principle. By dividing the original problem into 
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smaller, more manageable subproblems, the complexity of the QUBO problem is significantly 

reduced. The theoretical underpinning is that the solution space of the original problem is 

approximately preserved in the solution space of the block-diagonalized problem, provided the 

inter-cluster interactions are weak or sparsely represented. 

The overall complexity reduction can be quantified by the decrease in the number of non-zero 

entries in the QUBO matrix after block-diagonalization. Let |E| denote the number of non-zero 

entries in Q and |E'| the number of non-zero entries in Q’ The ratio | | / | |E E  serves as a 

measure of the complexity reduction: 

| |
Complexity Reduction Ratio ,

| |

E

E


=  (8)   

with a lower ratio indicating a greater reduction in problem complexity. 

Experiments and Results 

Qubit Usage vs. Solution Quality 

In this section, we present the results of our experiments, focusing on how the proposed 

methods—Adaptive Pruning Technique and Hybrid Heuristic-QA Approach—impact the trade-

off between qubit usage and solution quality. Our experiments were conducted using both 

quantum annealers (specifically, the D-Wave and Qilimanjaro system) and classical simulators 

(implemented using simulated annealing). The key metric we examine is the quality of the 

solution, which is measured by the objective function value after optimization, relative to the 

number of qubits required. 

 

Figure 2 Comparative Analysis of Solution Accuracy vs. Qubit Efficiency 

Figure 3 illustrates the relationship between solution accuracy and qubit efficiency for two 

different techniques: the Adaptive Pruning Technique and the Hybrid Heuristic-QA Approach. 

The x-axis represents qubit efficiency, defined as the ratio of qubits used to the problem size. 

The y-axis represents solution accuracy, relative to the optimal solution. 
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For the Adaptive Pruning Technique, we observed that as the pruning threshold increases, 

there is a noticeable reduction in the number of qubits needed to represent the problem. 

However, this reduction in qubits comes at the cost of solution quality. Initially, small increases 

in the pruning threshold have a negligible impact on solution quality, but beyond a certain 

threshold, there is a rapid degradation in the accuracy of the solution. Specifically, we found 

that up to 30% of the non-diagonal entries in the QUBO matrix could be pruned without 

significant loss in solution quality, leading to a reduction in qubit usage by approximately 25%. 

Beyond this point, further pruning resulted in a steep decline in solution quality, indicating that 

the matrix had lost too much critical information. 

In the case of the Hybrid Heuristic-QA Approach, the results were more favorable. By 

leveraging classical clustering techniques to reduce the effective problem size, the number of 

qubits required was significantly lower compared to the original problem, while maintaining 

high solution quality. The initial clustering phase reduced the problem size by approximately 

40%, and the subsequent quantum annealing phase produced solutions that were within 5% of 

the optimal value in terms of the objective function. This method consistently outperformed 

pure quantum annealing on unmodified QUBO matrices, particularly for larger problem 

instances where the qubit usage was reduced by nearly 50% without substantial loss in 

accuracy. 

Scalability Analysis 
The scalability of the proposed methods was tested across a range of problem sizes, from small 

instances with a few dozen variables to large instances with several hundred variables. The 

primary metric of interest here is the number of qubits required as a function of problem size 

and the complexity of the QUBO matrix. 

For the Adaptive Pruning Technique, scalability was generally favorable for small to medium-

sized problems. As the problem size increased, the technique's ability to prune effectively 

without significant quality loss diminished. This limitation is due to the increasing density of the 

QUBO matrix in larger problems, which limits the number of entries that can be pruned without 

severely affecting solution quality. The pruning technique showed diminishing returns for 

problems involving more than 500 variables, where the matrix's complexity necessitated 

retaining a greater number of qubits. 

Conversely, the Hybrid Heuristic-QA Approach demonstrated superior scalability. The initial 

clustering step effectively reduced problem complexity, making it feasible to solve larger 

instances within the quantum annealer's qubit limitations. The approach scaled well across 

problem sizes up to 1000 variables, maintaining high solution quality and reducing the qubit 

count by up to 50%. The method also demonstrated consistent performance across different 

types of problem instances, including both random and structured QUBO formulations, 

indicating its broad applicability. 
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Figure 3 Distribution of Bad Coverage Across Different Pruning Methods 

Figure 3 shows the distribution of "Bad coverage" as a function of the fraction of pruned QUBO 

entries, using three different pruning methods: Fraction, Threshold, and Random. The labels 

(a), (b), and (c) correspond to each method, providing a clear comparison of how "Bad 

coverage" changes with the fraction of pruned entries. 

 

Figure 4 Trade-off Between Qubit Usage and Solution Quality 

Figure 4 illustrates the trade-off between pruning threshold, solution quality, and qubit usage. 

As the pruning threshold increases, the percentage of qubits used decreases steadily, while the 

solution quality remains stable up to a certain point (around 30% pruning). Beyond this 

threshold, the solution quality starts to degrade significantly, highlighting the delicate balance 

between reducing qubit usage and maintaining high solution quality. 
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Comparative Analysis 
To evaluate the effectiveness of the proposed methods—Adaptive Pruning Technique and 

Hybrid Heuristic-QA Approach—we conducted a comparative analysis based on several key 

metrics: solution accuracy, computation time, and qubit efficiency. 

In terms of solution accuracy, both the Adaptive Pruning Technique and the Hybrid Heuristic-

QA Approach performed well for small problem instances, maintaining accuracy comparable to 

existing methods. However, as the problem size increased, our methods showed a distinct 

advantage. The Hybrid Heuristic-QA Approach consistently produced solutions within 5% of the 

optimal value, demonstrating superior accuracy, particularly in larger problem instances. 

Regarding computation time, the results varied between the two methods. The Adaptive 

Pruning Technique introduced additional computational overhead due to the iterative pruning 

process, particularly when determining the optimal pruning threshold. This overhead made the 

method slower in comparison to others. In contrast, the Hybrid Heuristic-QA Approach 

significantly reduced computation time by approximately 30% on average, especially for larger 

problem instances, thanks to its reduced problem size achieved through clustering and 

subsequent quantum annealing. 

For qubit efficiency, both methods demonstrated significant improvements. The Adaptive 

Pruning Technique achieved a reduction in qubit usage by up to 25%, while the Hybrid Heuristic-

QA Approach was even more effective, reducing qubit usage by up to 50%. These results are 

particularly noteworthy as they highlight the ability of our methods to maintain high solution 

quality while significantly reducing the number of qubits required, making them highly suitable 

for practical applications on current quantum hardware where qubit availability is a limiting 

factor. 

Table 1 Comparative Analysis of Proposed Methods 

Metric Adaptive Pruning Technique Hybrid Heuristic-QA Approach 

Solution 
Accuracy 

Comparable for small instances, 
superior for larger instances 

Within 5% of optimal, excels in 
large instances 

Computation 
Time 

Increased due to pruning overhead Reduced by 30% on average, 
faster for large instances 

Qubit Efficiency 25% reduction in qubit usage Up to 50% reduction in qubit 
usage 

Table 1 provides a summary of the performance of the Adaptive Pruning Technique and Hybrid 

Heuristic-QA Approach, highlighting the strengths of these methods in terms of solution 

accuracy, computation time, and qubit efficiency, especially in handling larger and more 

complex problem instances. 

Conclusion 
In this paper, we introduced and rigorously evaluated two novel methods for optimizing 

Quadratic Unconstrained Binary Optimization (QUBO) formulations: the Adaptive Pruning 

Technique and the Hybrid Heuristic-QA Approach. These methods were designed to address 

the critical trade-off between qubit usage and solution quality in quantum annealing, a 
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challenge that has limited the practical application of quantum computing to solve large-scale 

NP-complete problems. Our Adaptive Pruning Technique systematically reduces the complexity 

of QUBO matrices by eliminating less significant entries, thereby optimizing qubit usage without 

significantly degrading solution quality. The Hybrid Heuristic-QA Approach further enhances 

this optimization by integrating classical clustering techniques with quantum annealing, 

effectively reducing problem size and improving both computational efficiency and solution 

accuracy. 

The contributions of this research are significant in advancing the field of quantum computing. 

By demonstrating that it is possible to maintain high solution quality while significantly reducing 

the number of qubits required, we have provided a practical pathway for extending the 

capabilities of current quantum hardware. The scalability of these methods across various 

problem sizes and their applicability to different quantum devices were rigorously tested, 

offering valuable insights into how quantum resources can be more effectively leveraged in 

real-world applications. 

In closing, the findings of this paper hold substantial implications for both theoretical and 

applied quantum computing. By addressing key limitations in existing QUBO formulation 

techniques, our research not only contributes to the theoretical understanding of quantum 

annealing but also enhances its practical viability. These advancements bring us closer to 

realizing the full potential of quantum computing as a powerful tool for solving complex 

computational problems across various domains, ultimately paving the way for broader 

adoption and application of quantum technologies in industry and research. 
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