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             Abstract 
Multiple object tracking is a fundamental task in computer vision with significant 

implications for various applications, including traffic monitoring, autonomous driving, and 

video surveillance. This study aims to compare the performance of three state-of-the-art 

tracking algorithms: SORT, DeepSORT, and ByteTrack, in detecting and tracking vehicles and 

persons in highway timelapse videos. SORT is a simple and efficient tracking framework 

that combines detection and tracking to estimate object states in real-time. DeepSORT 

extends SORT by incorporating deep learning techniques to reduce identity switches and 

enhance tracking accuracy. ByteTrack, in contrast, is a one-shot detection-based approach 

that integrates object detection and tracking into a single model for improved efficiency. 

To evaluate the performance of these tracking methods, we employ a set of evaluation 

metrics, including Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking 

Precision (MOTP), ID Switches (IDs), Mostly Tracked (MT), Mostly Lost (ML), False Positives 

(FP), False Negatives (FN), and Processing Speed. The experiments are conducted using an 

open access video dataset. The experimental results reveal that ByteTrack consistently 

outperforms SORT and DeepSORT across most evaluation metrics. ByteTrack achieves a 

MOTA of 77.3%, MOTP of 82.6%, and the lowest number of ID switches at 558. It also 

demonstrates the highest percentage of mostly tracked objects (54.7%) and the lowest 

percentage of mostly lost objects (14.9%). Moreover, ByteTrack maintains a high 

processing speed of 171 FPS, surpassing both SORT and DeepSORT in terms of 

computational efficiency. This research shows the better performance of ByteTrack in 

accurately and efficiently tracking multiple objects, vehicles and persons, in highway 

timelapse videos. The findings of this research have implications for the development of 

robust and real-time tracking systems for various intelligent transportation and surveillance 

applications. Future research directions include further optimization of the ByteTrack 

algorithm and its adaptation to real-world scenarios.  

 

Keywords: multiple object tracking, SORT, DeepSORT, ByteTrack, highway timelapse, traffic monitoring, 

autonomous driving, video surveillance

Introduction 
Object Tracking is a subfield of computer vision that focuses on analyzing sequences of images 

and video streams. It extends the concept of Object Detection, where one or multiple objects 

are identified in a series of images [1]. Multiple Object Tracking (MOT) takes this a step further 
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by assigning unique instance IDs to different objects, ensuring that each object maintains a 

consistent ID throughout the entire video sequence [2]. MOT finds applications in various 

domains, including autonomous driving, camera surveillance, and robotics. 

Multiple Object Tracking, also known as Multiple Target Tracking (MTT), holds significant in the 

field of computer vision. The primary objectives of MOT involve locating multiple objects within 

an input video, maintaining their identities, and generating individual trajectories for each 

object. The objects being tracked can vary widely, ranging from pedestrians on the street and 

vehicles on the road to sports players on the court and groups of animals. In some cases, 

multiple "objects" may even refer to different parts of a single object, depending on the specific 

application and context [3]. 

Multi Object Tracking generally involves a two-stage approach. The first stage, known as Object 

Detection, focuses on identifying the location and categories of objects of interest within video 

frames. Once the objects are detected, unique instance IDs are assigned to each of them. 

The second stage, referred to as Instance Association, combines temporal information across 

different frames to generate trajectories for individual objects. The primary goal of this stage is 

to consistently assign Instance IDs to objects, ensuring that the same objects maintain their 

respective IDs throughout the video sequence. Instance association can be achieved through 

two main approaches. One approach relies on motion cues to assign detection boxes to 

tracklets, typically involving the application of a Kalman filter. The Kalman filter predicts the 

current frame bounding boxes of monitored tracklets, and detected bounding boxes are 

matched to predicted bounding boxes using the Intersection-Over-Union similarity metric. 

The other tracking approach uses feature information within bounding boxes to match 

instances across frames. This approach often requires an additional Neural Network to extract 

features, which are then used to match the content of detected boxes and tracklets using a 

distance metric such as Cosine similarity. The advantage of this approach is that it does not rely 

on the locations of bounding boxes, making it beneficial in scenarios with significant frame-to-

frame changes or temporary disappearance of objects [4]. 

Multiple Object Tracking (MOT) finds significant application in monitoring and analyzing traffic 

on highways. Highway environments present unique challenges for MOT systems due to factors 

such as high vehicle speeds, varied traffic densities, and complex road layouts. Effective MOT 

on highways can provide into traffic flow, congestion patterns, and potential safety hazards to 

enable better traffic management and infrastructure planning. 

One of the primary challenges in highway MOT is dealing with occlusions caused by vehicles 

overlapping or passing each other. When vehicles are in close proximity or partially obscured 

by other vehicles, it becomes difficult for the tracking system to maintain accurate trajectories. 

To address this issue, researchers have developed advanced occlusion handling techniques that 

uses information from multiple cameras or utilize sophisticated algorithms to estimate the 

positions of occluded vehicles based on their previous trajectories and surrounding context. 

These techniques help ensure that the tracking system maintains a consistent understanding of 

each vehicle's movement, even in the presence of occlusions [5]. 

Another aspect of MOT in highway environments is the ability to handle variable traffic densities 

and speeds. During peak traffic hours or in congested areas, the number of vehicles on the 
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highway can increase significantly, making it more challenging to accurately track individual 

vehicles. MOT systems designed for highways must be able to scale efficiently to accommodate 

these variations in traffic density. This often involves employing parallel processing techniques 

and optimizing the tracking algorithms to handle large numbers of objects simultaneously. 

Additionally, the system must be able to adapt to changes in vehicle speeds, as vehicles may 

slow down or speed up depending on traffic conditions [6].  

Traffic monitoring is used in managing and optimizing the flow of vehicles on roads and 

highways. Advanced technologies, such as sensors, cameras, and radar systems, are deployed 

to collect real-time data on traffic patterns, congestion levels, and vehicle speeds [7]–[9]. This 

information is then processed and analyzed by sophisticated algorithms to identify bottlenecks, 

accidents, and other disruptions in the traffic network. Authorities can use these data to make 

informed decisions, such as adjusting traffic signal timings, deploying emergency services, or 

providing alternative route recommendations to drivers. Effective traffic monitoring not only 

improves road safety but also reduces travel times and enhances overall transportation 

efficiency. 

Self-driving cars rely on a complex array of sensors, cameras, and AI-powered software to 

perceive and interpret their surroundings. These systems continuously scan the environment, 

detecting pedestrians, other vehicles, traffic signs, and obstacles in real-time. Sophisticated 

algorithms process this data to make split-second decisions, controlling the vehicle's 

acceleration, braking, and steering. While the technology is still evolving, autonomous vehicles 

have the potential to significantly reduce human error, which is a leading cause of accidents. 

They could also optimize traffic flow, reduce congestion, and provide mobility solutions for 

individuals who are unable to drive. 

Video surveillance has emerged as a powerful tool for enhancing security and public safety in 

various settings, from cities and communities to businesses and private properties. High-

resolution cameras, often equipped with night vision and wide-angle lenses, are strategically 

placed to monitor areas and detect suspicious activities. The footage captured by these cameras 

can be analyzed in real-time using advanced computer vision algorithms, which can 

automatically identify and track objects, detect anomalies, and trigger alerts when necessary. 

In the event of a crime or incident, video surveillance footage serves as evidence, assisting law 

enforcement in investigations and prosecutions.  

Multiple object tracking systems can simultaneously detect and track numerous vehicles across 

multiple lanes and intersections. These systems can accurately identify and distinguish between 

different types of vehicles, such as cars, trucks, motorcycles, and buses, providing detailed 

insights into traffic composition and behavior. The real-time tracking data enables traffic 

management centers to monitor vehicle speeds, detect congestion patterns, and identify 

potential safety hazards. This information can be used to optimize traffic flow, adjust signal 

timings, and provide real-time updates to drivers for improving road safety and efficiency. 

Multiple object tracking is also crucial in the development and deployment of autonomous 

vehicles.  

Methods 
This study compared performances of SORT, DeepSORT, and ByteTrack tracking methods in 

detecting and tracking vehicles and persons in highway with a timelapse video.  
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SORT (Simple Online and Realtime Tracking) 

SORT, which stands for Simple Online and Realtime Tracking, is a widely used algorithmic 

framework designed for tracking multiple objects in video sequences or real-time applications 

[10]. It offers a straightforward and efficient approach to consistently track objects across 

successive frames [11]. The core concept of SORT is to combine object detection and tracking 

techniques to estimate the state of each object present in the video. The algorithm functions in 

an online and real-time fashion, processing the incoming frames as they are received and 

dynamically updating the object tracks based on the new information [12]. 

DeepSORT 

DeepSORT is an advanced computer vision tracking method that assigns a unique identifier to 

each object being tracked. It builds upon the SORT algorithm by integrating deep learning 

techniques, which contribute to reducing identity switches and enhancing the overall tracking 

performance [13]. SORT demonstrates remarkable results in terms of tracking precision and 

accuracy. However, it faces challenges when encountering occlusions and frequently generates 

a substantial number of ID changes, primarily due to the constraints of the association matrix it 

employs. In comparison, DeepSORT utilizes a more effective association metric by combining 

both motion and appearance descriptors [14]. This enables DeepSORT to maintain object tracks 

not only based on their movement and velocity but also by considering their visual 

characteristics.  

 
Figure 1. DeepSort algorithm. Source: Author 

 

ByteTrack 

ByteTrack is an efficient real-time object tracking algorithm designed to effectively track objects 

in video sequences [15]. The authors propose ByteTrack as a simple, efficient, and versatile data 

association method. Unlike other techniques, ByteTrack does not retain all the detection boxes; 

instead, it preserves nearly all of them and categorizes them into high-score and low-score 

detection boxes. The algorithm first associates the tracklets with the high-score detection 

boxes. However, certain tracklets become mismatched when the appropriate high-score 
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detection box does not correspond to them. This situation commonly arises in cases of motion 

blur, occlusion, or changes in object size. To address this, ByteTrack subsequently associates 

these mismatched tracklets with the low-score detection boxes, effectively recovering the 

objects and eliminating background noise. ByteTrack employs a one-shot detection-based 

approach, integrating object tracking and detection into a single model [16]. ByteTrack achieves 

high tracking speed by sharing the computation between detection and tracking.  

 
Figure 2.  Workflow for the experiment of this study 

 

Evaluation metrices  

Multiple Object Tracking Accuracy (MOTA) is a key metric for evaluating the overall tracking 
accuracy of a system. It takes into account false positives, false negatives, and identity switches. 
MOTA is calculated using the formula: MOTA = 1 - (FN + FP + IDs) / GT [17], where FN represents 
false negatives, FP represents false positives, IDs represents identity switches, and GT 
represents the number of ground truth objects. A higher MOTA value indicates better tracking 
performance [18]. 
Another metric is Multiple Object Tracking Precision (MOTP), which measures the average 
distance between the predicted and ground truth bounding boxes of correctly tracked objects. 



 

47 
International Journal of Sustainable Infrastructure for Cities and Societies     

MOTP is calculated as the average intersection over union (IoU) between the predicted and 
ground truth bounding boxes. Higher MOTP values indicate better localization precision. 
ID switches (IDs) occur when a tracked object's identity is incorrectly assigned to another object. 
Lower ID switch counts are desirable as they indicate better identity preservation and 
consistency in tracking [19]. 
Mostly Tracked (MT) and Mostly Lost (ML) are metrics that provide insights into tracking 
completeness. MT represents the percentage of ground truth trajectories that are tracked for 
at least 80% of their lifespan, while ML represents the percentage of ground truth trajectories 
that are tracked for less than 20% of their lifespan. Higher MT and lower ML percentages 
indicate better tracking completeness. 
False Positives (FP) and False Negatives (FN) are metrics that assess detection accuracy. FP 
represents the number of incorrect detections that do not correspond to any ground truth 
object, while FN represents the number of missed detections where a ground truth object is 
not detected. Lower FP and FN counts indicate better detection accuracy. 
Processing speed is a consideration for tracking algorithms. It measures the computational 
efficiency of the algorithm and is typically reported in frames per second (FPS) or runtime per 
frame. Higher FPS or lower runtime per frame indicates faster processing speed, which is 
desirable for real-time applications [20]. 

Results  
The provided information in table 1 is a snapshot of the NVIDIA System Management Interface 

(NVIDIA-SMI) output, which displays the status and utilization of NVIDIA GPUs in a system. 

There is one Tesla T4 GPU installed, identified as GPU 0. The GPU is currently not persistent and 

is connected to the PCI bus with ID 00000000:00:04.0.  The GPU's fan speed is not available 

(N/A), and the temperature is 46°C, which is within the normal operating range. The GPU is 

running in the P0 performance state, consuming 27W of power out of the maximum 70W 

capacity. In terms of memory usage, the GPU is utilizing 697MiB out of the total 15360MiB 

available. The GPU is running in the Default compute mode, and the Multi-Instance GPU (MIG) 

mode is not applicable (N/A). 

Table 1. GPU status for the experiment  

Property Value 

GPU Name Tesla T4 

Persistence-M Off 
Bus-Id 00000000:00:04.0 
Disp.A Off 

Volatile Uncorr. ECC 0 
Fan N/A 

Temp 46°C 
Perf P0 

Pwr:Usage/Cap 27W / 70W 
Memory-Usage 697MiB / 15360MiB 

GPU-Util 0% 
Compute M. Default 

MIG M. N/A 
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Table 2. The input video details  

MEDIA TYPE Resolution FPS Published Date 

MP4 3840 x 2160 29 August 11, 2023 

URL https://pixabay.com/videos/cars-freeway-highway-autobahn-busy-175397/ 

 

 
Figure 2. 384x640 1 person, 18 cars, 2 trucks, 62.0ms 

Speed: 3.4ms preprocess, 62.0ms inference, 1.7ms postprocess per image at shape (1, 3, 384, 640) 
 

The performance evaluation of SORT, DeepSORT, and ByteTrack reported in table 3. reveals 

significant differences in their tracking capabilities. ByteTrack stands out as the top performer, 

achieving a MOTA score of 77.3%, substantially higher than DeepSORT's 61.4% and SORT's 

54.7%. This indicates that ByteTrack exhibits superior overall tracking accuracy, effectively 

minimizing false positives, false negatives, and identity switches. Additionally, ByteTrack 

demonstrates the highest MOTP score of 82.6%, surpassing DeepSORT's 79.1% and SORT's 

77.5%. This suggests that ByteTrack excels in precise localization of tracked objects, maintaining 

accurate bounding box predictions. 

In tracking completeness, ByteTrack continues to outperform its counterparts. It achieves an 

MT percentage of 54.7%, indicating that it successfully tracks a majority of ground truth 

trajectories for a significant portion of their lifespan. In contrast, DeepSORT and SORT have 

lower MT percentages of 45.1% and 34.2%, respectively. Furthermore, ByteTrack exhibits the 

lowest ML percentage at 14.9%, compared to 21.3% for DeepSORT and 24.6% for SORT. This 

suggests that ByteTrack is more effective in maintaining consistent tracking throughout the 

objects' lifespans, with fewer instances of lost or fragmented trajectories. 
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Figure 3. 384x640 3 persons, 5 cars, 2 trucks, 62.1ms 
Speed: 5.5ms preprocess, 62.1ms inference, 1.7ms postprocess per image at shape (1, 3, 384, 640) 

 

 

Figure 4. 384x640 4 persons, 12 cars, 3 trucks, 67.9ms 
Speed: 3.1ms preprocess, 67.9ms inference, 2.3ms postprocess per image at shape (1, 3, 384, 640) 

 

In terms of detection accuracy, ByteTrack demonstrates the lowest false positive and false 

negative counts among the three methods. It generates 3,828 false positives and 14,661 false 

negatives, notably fewer than DeepSORT's 5,604 false positives and 21,796 false negatives, and 

significantly lower than SORT's 7,876 false positives and 26,452 false negatives. This indicates 
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that ByteTrack exhibits better precision and recall in detecting objects accurately. Moreover, 

ByteTrack achieves the lowest number of identity switches at 558, compared to 781 for 

DeepSORT and 831 for SORT. This highlights ByteTrack's ability to maintain consistent object 

identities throughout the tracking process, minimizing instances of identity confusion or 

misassignment. In terms of processing speed, ByteTrack and SORT demonstrate better 

performance, achieving 171 FPS and 143 FPS, respectively. This indicates their suitability for 

real-time applications. On the other hand, DeepSORT has a lower processing speed of 61 FPS, 

which may be a consideration for certain time-critical scenarios. 

 

TABLE 3. Performance scores for SORT, DeepSort, and Bytetrack: 

METRIC SORT DeepSORT ByteTrack 
MOTA 54.7% 61.4% 77.3% 
MOTP 77.5% 79.1% 82.6% 
ID SWITCHES 831 781 558 
MT 34.2% 45.1% 54.7% 
ML 24.6% 21.3% 14.9% 
FP 7,876 5,604 3,828 
FN 26,452 21,796 14,661 
PROCESSING SPEED 143 FPS 61 FPS 171 FPS 

 

Conclusion  
The research presented in this study focuses on comparing the performance of three state-of-

the-art tracking algorithms, namely SORT, DeepSORT, and ByteTrack, for multiple object 

tracking in highway timelapse videos. Multiple object tracking is a task in computer vision with 

applications in areas such as traffic monitoring, autonomous driving, and video surveillance. 

SORT is a simple and efficient tracking framework that combines detection and tracking to 

estimate object states in real-time, while DeepSORT extends SORT by incorporating deep 

learning techniques to reduce identity switches and improve tracking accuracy. On the other 

hand, ByteTrack is a one-shot detection-based approach that integrates object detection and 

tracking into a single model for enhanced efficiency. The study employs a set of evaluation 

metrics, including MOTA, MOTP, ID Switches, MT, ML, FP, FN, and Processing Speed, to assess 

the performance of these tracking methods using the open access video dataset. 

The experimental results demonstrate that ByteTrack consistently outperforms SORT and 

DeepSORT across most evaluation metrics. ByteTrack achieves a MOTA of 77.3%, MOTP of 

82.6%, and the lowest number of ID switches at 558. It also exhibits the highest percentage of 

mostly tracked objects (54.7%) and the lowest percentage of mostly lost objects (14.9%). 

Furthermore, ByteTrack maintains a high processing speed of 171 FPS, surpassing both SORT 

and DeepSORT in terms of computational efficiency. These findings show the superiority of 

ByteTrack in accurately and efficiently tracking multiple objects vehicles and persons, in 

highway timelapse videos. The research has significant implications for the development of 

robust and real-time tracking systems for various intelligent transportation and surveillance 

applications. Future research directions include further optimization of the ByteTrack algorithm 

and its adaptation to diverse real-world scenarios. 
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The current study has several limitations that should be addressed in future research. First, the 

evaluation is conducted on a single video dataset, which primarily consists of highway timelapse 

videos. This dataset does not fully represent the diverse range of real-world scenarios 

encountered in multiple object tracking applications. To enhance the generalizability of the 

findings, future studies should incorporate a wider variety of datasets, including different 

camera angles, lighting conditions, and object densities. Additionally, the study focuses on 

tracking vehicles and persons, which may limit its applicability to other object categories. 

Expanding the evaluation to include a broader range of object types, such as pedestrians, 

animals, and various vehicles, would provide a more comprehensive assessment of the tracking 

algorithms' capabilities. Future research could explore additional metrics that consider factors 

such as trajectory smoothness, occlusion handling, and long-term tracking stability. A more in-

depth analysis of the algorithms' inner workings and the impact of different parameter 

configurations on tracking performance would provide additional optimize these methods for 

specific applications. 

One avenue is the integration of advanced deep learning techniques, such as attention 

mechanisms and graph neural networks, into the tracking frameworks. These techniques have 

the potential to improve the algorithms' ability to handle complex object interactions, 

occlusions, and long-term dependencies. Investigating the fusion of multiple sensor modalities, 

such as lidar and radar, alongside video data could enhance the robustness and accuracy of 

tracking in challenging environments. Another direction is the development of lightweight and 

computationally efficient tracking algorithms that can operate in real-time on resource-

constrained devices, such as embedded systems and mobile platforms. This would enable the 

deployment of tracking systems in a wider range of applications, including autonomous 

vehicles, drones, and edge computing scenarios. Application of multiple object tracking 

algorithms to domain-specific challenges, such as tracking in crowded scenes, tracking under 

adverse weather conditions, and tracking in the presence of camera motion. Addressing these 

challenges needs the development of specialized tracking techniques and the incorporation of 

domain knowledge into the tracking frameworks.  
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