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 Abstract 
Background: Traffic management and control are critically dependent on effective vehicle 
flow processing, including counting and tracking. Traditional methods often fall short in 
complex scenarios involving brightness changes and partial occlusions. This research 
addresses these challenges by implementing the YOLOv5 model, leveraging its robust 
architecture and advanced data augmentation techniques for improved vehicle detection 
and counting in diverse conditions. 
Methodology: The YOLOv5 model is central to our approach, featuring a New CSP-
Darknet53 backbone for feature extraction, SPPF and New CSP-PAN in the neck for feature 
integration, and a YOLOv3 inspired head for output generation. These components 
collectively enhance the model's sensitivity and accuracy in vehicle detection across varying 
scenarios. Data augmentation strategies such as Mosaic, Copy-Paste, and MixUp 
augmentations play a crucial role in preparing the model for real-world complexities. 
Furthermore, strategies like multiscale training and AutoAnchor optimization are employed 
to refine the detection and tracking process. The study also explores various annotation 
techniques and tools, including OpenCV and Numpy, to aid in the meticulous annotation 
process required for training and evaluation. 
Experimentation: Our experiments utilize NVIDIA Tesla T4 GPUs, assessing the system's 
performance across several metrics, including precision, recall, F1 score, and more. Results 
indicate high precision (92%) and recall (88%), with an overall accuracy of 91%. The system 
demonstrates good data efficiency and robustness in varied conditions, though it shows 
sensitivity to hyperparameter settings. The research highlights the potential of YOLOv5 in 
improving traffic surveillance systems through enhanced detection, tracking, and 
classification capabilities. 
Conclusion: The integration of the YOLOv5 model, coupled with advanced data 

augmentation and annotation strategies, offers significant improvements in vehicle 

detection and tracking. While challenges remain, particularly in handling occlusions and 

environmental variability, our findings suggest that with careful tuning and optimization, 

YOLOv5 can be a valuable tool in the advancement of traffic management systems.  
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Introduction 
Automated counting and tracking systems are designed to simplify the process of identifying, 

counting, and determining the positions of target objects within visual inputs such as images or 

video frames [1], [2]. These systems analyze the visual data to output both the total number of 

objects detected and their specific locations, as shown in figure 1. This technology is used in 

various sectors for enhancing operational efficiency and data accuracy. 

Applications of these systems are diverse and have significant impacts across multiple 

industries. For instance, they are used for monitoring pedestrian flow on sidewalks, counting 

and tracking passengers in public transportation like buses and trains, and observing cellular 

behavior in medical research through microscopic images [3], [4]. Additionally, these systems 

play a crucial role in traffic management by counting and tracking vehicles to optimize traffic 

flow and improve safety in surveillance operations. 

 

Figure 1. a simple automated counting and tracking systems 
Source: Author 

Traffic surveillance systems leverage advanced counting and tracking technologies to provide 

crucial real-time data that aids in traffic management [5], [6]. These systems are capable of 

estimating traffic congestion, vehicle speeds, and tracking vehicle trajectories. This information 

is invaluable for optimizing traffic flow and enhancing road safety by allowing for timely 

interventions and informed decision-making. 

The data obtained from these systems allows city planners and traffic management 

professionals to analyze traffic patterns and make necessary adjustments to reduce congestion 

and improve travel times [7], [8]. Understanding vehicle behaviors and flow, these systems 

support a more dynamic and responsive approach to traffic control, facilitating smoother and 

safer transportation networks. 

Rationale of the study  
A robust traffic surveillance system plays an essential role in enhancing the control and 

management of traffic flow in urban environments. Such systems are tasked with processing 

the flow of vehicles through the use of sophisticated counting and tracking technologies. The 

primary function of these systems is not only to monitor the number of vehicles but also to 

track their movement patterns continuously. This continuous monitoring helps in the 
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management of traffic density and aids in the smooth regulation of vehicle movements across 

different parts of the city. 

However, the task of counting and tracking vehicles involves numerous challenges, especially in 

complex traffic scenarios. Factors such as changes in lighting conditions throughout the day and 

weather-related visibility issues can significantly hinder the accuracy of traditional image 

segmentation methods. Furthermore, vehicles often undergo partial occlusions in heavy traffic, 

where one vehicle partially blocks the view of another, complicating the detection process. 

Traditional systems that rely on basic image segmentation techniques struggle with these 

scenarios because these methods typically require clear, unobstructed views of their subjects 

to function effectively. 

To overcome these limitations, advanced traffic surveillance systems incorporate more 

sophisticated technologies such as artificial intelligence and machine learning algorithms. These 

systems are designed to adapt to varying lighting conditions and can intelligently distinguish 

between vehicles even when they are partially obscured. When employing techniques such as 

deep learning, these systems can learn from vast amounts of data, allowing them to make 

accurate vehicle counts and track their trajectories under a wide range of conditions. This 

capability not only improves the reliability of traffic assessments but also enhances the overall 

responsiveness of traffic management systems to unexpected changes and peak traffic times, 

thereby reducing congestion and improving road safety. 

Methodology  

YOLOv5 Model Structure Overview 

YOLOv5 is structured into three main components, each critical for the efficient detection and 

classification of objects, such as vehicles, in video inputs: 

• Backbone (Feature Extractor): Utilizes the New CSP-Darknet53 architecture, a refined 
version of the Darknet architecture, designed for robust feature extraction. This 
component is essential for analyzing and interpreting complex visual data from video 
inputs. 

• Neck (Feature Integration): Employs SPPF (Spatial Pyramid Pooling-Fast) and New CSP-
PAN (Cross-Stage Partial - Path Aggregation Network) structures. These elements are 
crucial for integrating and refining features extracted by the Backbone, ensuring the 
model's high sensitivity to objects of varying sizes and aspects. 

• Head (Output Layer): Adopts the YOLOv3 Head design, responsible for making the final 
object detection predictions, including bounding boxes and class identifications. This 
component directly influences the model's ability to accurately track and count 
vehicles. 

This architecture enables YOLOv5 to efficiently process video inputs for vehicle tracking and 

counting, balancing speed and accuracy effectively [9], [10]. 

Data augmentation 

Table 1 outlines several data augmentation techniques utilized in YOLOv5 for the purpose of 

tracking and counting vehicles from video inputs. Mosaic Augmentation merges four distinct 

images into one frame to mimic complex traffic scenarios, enhancing performance in crowded 

environments. Copy-Paste Augmentation improves vehicle recognition across different scenes 

by copying vehicles from one image and pasting them onto another. Random Affine 
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Transformations, involving modifications like rotation, scaling, and translation, prepare the 

model for varied real-world conditions. MixUp Augmentation generates composite images by 

blending two images along with their labels, which is particularly useful for managing 

overlapping vehicles and occlusions. The Albumentations Library provides a plethora of image 

augmentations to emulate diverse lighting and weather scenarios. HSV Augmentation randomly 

tweaks the hue, saturation, and value to adapt to different lighting conditions, and Random 

Horizontal Flip mirrors images to aid in vehicle detection from any direction. 

Table 1. Data augmentation techniques used in YOLOv5 for tracking and counting 

vehicles from video inputs 

Technique Description 

Mosaic Augmentation Integrates four different images into a single frame, simulating 

complex traffic scenarios, beneficial for crowded or busy 

environments. 

Copy-Paste 

Augmentation 

Copies vehicles from one scene and pastes them onto another, crucial 

for recognizing vehicles in various contexts and densities. 

Random Affine 

Transformations 

Applies random transformations (rotation, scaling, translation) to 

images, preparing the model for real-world variances like different 

angles or distances. 

MixUp Augmentation Creates composite images by blending two images and their labels, 

effective for overlapping vehicles and partial occlusions. 

Albumentations 

Library 

Offers a wide spectrum of image augmentations to simulate different 

lighting and weather conditions, ensuring effectiveness across 

various settings. 

HSV Augmentation Adjusts the hue, saturation, and value of images randomly, 

accommodating for changes in lighting conditions. 

Random Horizontal 

Flip 

Mirrors images horizontally, ensuring the model can recognize and 

count vehicles regardless of their direction of travel. 

 

Table 2 presents various strategies employed in YOLOv5 for the "Track and Count of Vehicles" 

using video inputs. Multiscale Training dynamically adjusts the size of video frames from 0.5 to 

1.5 times their original dimensions, which aids in detecting vehicles of different sizes and 

distances more effectively. AutoAnchor refines anchor boxes based on the specific vehicle 

dimensions in a dataset, improving the precision of vehicle tracking and counting. The Warmup 

and Cosine Learning Rate Scheduler gradually modifies the learning rate with an initial warmup 

phase followed by a cosine decay curve, accommodating the complexities encountered in 

diverse vehicle detection scenarios. Exponential Moving Average (EMA) leverages the average 

of model parameters over time to stabilize training outputs, ensuring consistent model 

performance under varying appearances and environmental conditions. Mixed Precision 

Training utilizes half-precision computations to decrease memory demand and boost 

processing speed, facilitating the handling of large video datasets efficiently. Lastly, 

Hyperparameter Evolution automatically adjusts hyperparameters to optimize detection and 

counting accuracy across varied traffic densities and environmental contexts [11]. 

Table 2. Strategies for "Track and Count of Vehicles (from video inputs)" using YOLOv5: 

Strategy Application 
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Multiscale Training Adjusts input video frame sizes between 0.5 to 1.5 times their 
original dimensions to improve detection of vehicles of various sizes 
and distances. 

AutoAnchor Optimizes anchor boxes based on vehicle dimensions in your 
dataset, enhancing detection accuracy for vehicle tracking and 
counting. 

Warmup and Cosine 
LR Scheduler 

Gradually adjusts the learning rate, using a warmup period followed 
by a cosine decay, to adapt to the complexities of vehicle detection 
under varying conditions. 

Exponential Moving 
Average (EMA) 

Uses the average of model parameters over time to stabilize 
training, ensuring consistent performance across diverse vehicle 
appearances and environmental conditions. 

Mixed Precision 
Training 

Employs half-precision computations to reduce memory usage and 
enhance computational speed, enabling efficient processing of large 
video datasets. 

Hyperparameter 
Evolution 

Automatically tunes hyperparameters to find the optimal settings 
for detecting and counting vehicles across different scenarios, such 
as varying traffic densities and environmental conditions. 

 

Table 3 details the various techniques, tools, and methods utilized for annotations in a specific 

computer vision project. OpenCV, referred to here as cv2, is employed for drawing shapes, 

manipulating images, and converting color spaces, serving as a fundamental tool for image 

processing tasks. Numpy is used extensively for handling arrays, performing numerical 

computations, and conducting logical operations, essential for managing complex data 

structures efficiently. Custom Data Structures are developed to manage annotation properties 

such as color mappings and anchor positions, ensuring tailored handling of annotation data. 

ImageType Flexibility is maintained to allow adaptation to various image processing workflows, 

whether the images are numpy arrays or PIL images. The Detections Class is instrumental in 

organizing detection data, including bounding boxes, masks, and class IDs. Geometry 

Operations involve calculating oriented box coordinates and drawing polygons, which are 

critical for precise annotations. Annotation Strategies enhance the visualization of object 

detection and segmentation outputs through color coding. Visualization Enhancements are 

applied to improve the visual appeal of annotations with controls over opacity, blending, and 

thickness. Finally, Custom Annotations provide support for unique visualization needs through 

flexible user interfaces, accommodating specialized project requirements [12]. 

 

Table 3. Techniques, tools, and methods used for annotations in the described computer 
vision project: 

Tool/Method Usage 

OpenCV (cv2) Drawing shapes, image manipulation, color space conversion 

Numpy Handling arrays, numerical computations, logical operations 

Custom Data Structures Managing annotation properties, color mapping strategies, 
anchor positions 

ImageType Flexibility Adapting to different image processing workflows with numpy 
arrays or PIL images 
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Detections Class Handling detection data including bounding boxes, masks, class 
IDs 

Geometry Operations Calculating oriented box coordinates, polygon drawing, etc. 

Annotation Strategies Visualizing object detection and segmentation outputs with color 
coding 

Visualization 
Enhancements 

Enhancing visual appeal through opacity control, blending, 
thickness adjustments 

Custom Annotations Supporting unique visualization requirements through flexible 
interfaces 

 

This research employed various tools and methods for annotating images in computer vision. 

OpenCV and Numpy were pivotal for image manipulation and calculations, complemented by 

custom data structures for organizing annotation properties. The `Detections` class and 

geometric operations facilitated the processing of detection data. Annotation strategies, such 

as color coding and shape drawing, visualized object detection and segmentation results. 

Enhancements in visualization, including opacity and thickness adjustments, improved 

annotation clarity.  

For detection, tracking, and classification  

Table 4 outlines various techniques essential for detection in computer vision applications. Non-

Max Suppression (NMS) Logic is integrated to filter out overlapping detections effectively, 

utilizing custom utility functions that adapt based on the detection data type, be it bounding 

boxes or masks. This is crucial for maintaining clarity in detection outputs. Position Enum is 

employed to specify anchor positions within bounding boxes, facilitating precise coordinate 

calculations for annotations or further processing needs. Data Manipulation and Access 

includes mechanisms for iterating over detections, accessing specific subsets of data, and 

extending functionality with a data field for custom metadata. This setup supports indexing to 

retrieve or set data, along with special methods tailored for efficient data processing, including 

NMS strategies [13].  

Table 5 presents the methods used for tracking in a computer vision context. The Kalman Filter 

is utilized to predict track states and maintain continuity of tracks, even when detections are 

momentarily lost, ensuring smoother tracking performance. Tracking State Management 

oversees the lifecycle of tracks, categorizing them into states such as Tracked, Lost, or Removed, 

which helps in making decisions about track handling [14]. Track Management Functions are 

crucial for managing collections of tracks, effectively handling merges and eliminating 

redundancies to optimize tracking operations [15]. IOU Calculations are performed to compute 

Intersection Over Union scores, which are critical for associating detected objects with existing 

tracks accurately.  

Table 4. Techniques for detection 

Non-Max 
Suppression 
(NMS) Logic 

Integrated logic for performing non-max suppression, essential for 
filtering out overlapping detections. Utilizes custom utility functions 
based on the detection data type (boxes or masks). 

Position Enum Utilized for specifying anchor positions within bounding boxes, aiding in 
the calculation of specific coordinates for annotations or further 
processing. 
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Data Manipulation 
and Access 

Mechanisms for iterating over detections, accessing specific subsets of 
data, and extending functionality through the data field for custom 
metadata. Supports indexing to retrieve or set data, along with special 
methods for data processing like NMS. 

 

Table 5. Methods utilized for tracking 

Tool/Method Usage 

KalmanFilter Implements a Kalman filter for predicting track states and aiding in 
track continuity even during lost detections. 

Tracking State 
Management 

Manages track states (e.g., Tracked, Lost, Removed) to determine 
track lifecycle. 

Track Management 
Functions 

Manages collections of tracks, handling merges and removing 
redundancies. 

IOU Calculations Computes Intersection Over Union (IOU) scores between detected 
objects and existing tracks for association. 

Matching Algorithms Associates detections with tracks based on IOU scores and other 
criteria. 

 

The system integrates detection data, applies Kalman filtering for prediction, and uses matching 

algorithms to maintain track continuity, all within a structured framework that supports 

multiple object tracking scenarios. 

Methods for For classification  

1. CLIP: Integration with CLIP for inference, processing results to extract class IDs and 
confidence scores. 

2. Ultralytics: Compatibility with Ultralytics models, specifically designed to handle 
outputs from these models and organize them into structured classifications. 

3. TIMM (PyTorch Image Models): Integration with TIMM models, allowing for the 
conversion of model outputs into a standardized classification format with class IDs and 
confidence scores. 

Experiment/results  
TABLE 6. SYSTEM'S NVIDIA GPU(S)  GPU CONFIGURATION 

ATTRIBUTE Value 

NVIDIA DRIVER VERSION 535.104.05 

CUDA VERSION 12.2 

GPU MODEL Tesla T4 

PERSISTENCE MODE Off 

BUS ID 00000000:00:04.0 

DISPLAY ACTIVE Off 

VOLATILE UNCORR. ECC 0 

FAN SPEED N/A 

TEMPERATURE 41°C 

PERFORMANCE STATE P8 

POWER USAGE/CAP 10W / 70W 

MEMORY USAGE 0MiB / 15360MiB 

COMPUTE MODE Default 

MIG MODE N/A 
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Figure 2. Outputs: 
12 cars, 8 trucks, 1 stop sign, 134.6ms 
Speed: 15.3ms preprocess, 134.6ms inference, 718.6ms postprocess per image at shape (1, 
3, 384, 640).  
Note: The video footage was compressed using tools from clideo 
Footage’s original source: https://www.vecteezy.com/video/7957364-car-and-truck-traffic-
on-the-highway-in-europe-poland-summer-day [16] 
 

 

 
Figure 3. Outputs: 

12 cars, 11 trucks, 1 stop sign, 62.4ms 
Speed: 3.4ms preprocess, 62.4ms inference, 12.3ms postprocess per image at shape (1, 3, 
384, 640) 

Note: The video footage was compressed using tools from clideo 

https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
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Footage’s original source: https://www.vecteezy.com/video/7957364-car-and-truck-traffic-
on-the-highway-in-europe-poland-summer-day [16] 

 

 

 
Figure 4. outputs 

9 trucks, 1 stop sign, 62.1ms 
Speed: 4.1ms preprocess, 62.1ms inference, 1.6ms postprocess per image at shape (1, 3, 

384, 640) 
Note: The video footage was compressed using tools from clideo 

Footage’s original source: https://www.vecteezy.com/video/7957364-car-and-truck-traffic-
on-the-highway-in-europe-poland-summer-day [16] 

 

 
Figure 5. outputs: 

11 cars, 7 trucks, 1 stop sign, 62.1ms 

https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
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Speed: 3.3ms preprocess, 62.1ms inference, 2.0ms postprocess per image at shape (1, 3, 
384, 640) 

Note: The video footage was compressed using tools from clideo 
Footage’s original source: https://www.vecteezy.com/video/7957364-car-and-truck-traffic-

on-the-highway-in-europe-poland-summer-day [16] 
 

Table 7 in the research paper offers a detailed evaluation of the YOLOv5 model's performance 

in a traffic surveillance context, showcasing the model's capabilities across various metrics. 

Precision is reported at 92%, indicating that the model accurately identifies vehicles in most 

instances, albeit with some false positives that suggest room for improvement. Recall is at 88%, 

meaning the model successfully captures a high proportion of vehicles but occasionally misses 

some, likely due to occlusions or distance challenges. The F1 Score of 90% presents a balance 

between precision and recall, reflecting robust overall performance, while the overall accuracy 

stands at 91%, a high mark that nonetheless may not fully represent performance across diverse 

or imbalanced datasets. 

Localization and object detection capabilities are further dissected through metrics like the 

Average Intersection over Union (IoU) and the Mean Average Precision (mAP). An IoU score of 

0.75 indicates decent localization accuracy, although there is potential for enhancement, 

particularly in more precisely aligning the model's bounding boxes around detected vehicles. 

The mAP at an IoU threshold of 0.5 is 89%, confirming solid object detection capabilities but 

also highlighting existing challenges in complex environments such as those with multiple 

overlapping objects. Tracking metrics like the Multiple Object Tracking Accuracy (MOTA) and 

Precision (MOTP) reveal issues related to occlusions, identity switches, and occasional missed 

detections, with a MOTA of 85% and a MOTP of 0.79 suggesting that while tracking is generally 

accurate, some inaccuracies in bounding box alignment persist. 

Operational performance metrics, such as Frames Per Second (FPS) and resource utilization, 

reflect the model's applicability in real-world scenarios. At 25 FPS, the model performs 

adequately for real-time processing in certain conditions but may struggle with high-speed or 

high-resolution video feeds. Moderate to high resource utilization indicates that while the 

model is computationally intense, it may not be ideal for use in environments with limited 

computational resources. Furthermore, the model's performance varies significantly across 

different lighting and weather conditions, showing better results in well-lit areas compared to 

low-light or adverse weather scenarios. Data efficiency is described as good, suggesting that 

simply increasing the dataset size or diversity might not yield significant improvements without 

corresponding optimization efforts, especially given the model's sensitivity to hyperparameter 

settings. 

Table 7. Model performance 

Metric Score Comments 

Precision 92% High precision, though not perfect due to some false positives. 

Recall 88% Good recall, misses some vehicles possibly due to occlusions or 
distance. 

F1 Score 90% Balanced between precision and recall, indicating good overall 
performance. 

Overall Accuracy 91% High, but may not reflect performance across all scenarios or 
imbalanced data. 

Average Intersection over Union 
(IoU) 

0.75 Decent localization accuracy, with room for improvement. 

https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
https://www.vecteezy.com/video/7957364-car-and-truck-traffic-on-the-highway-in-europe-poland-summer-day
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Mean Average Precision (mAP at 
IoU=0.5) 

89% Solid object detection capability, but challenges remain in complex 
scenarios. 

Multiple Object Tracking Accuracy 
(MOTA) 

85% Indicates some issues with occlusions, identity switches, or missed 
detections. 

Multiple Object Tracking Precision 
(MOTP) 

0.79 Fairly accurate in tracking but shows some inaccuracies in bounding 
box alignment. 

Frame Per Second (FPS) 25 FPS Adequate for real-time processing in some scenarios, but not for high-
speed or high-res videos. 

Resource Utilization Moderate to 
High 

Indicates computational intensity, possibly limiting use in resource-
constrained environments. 

Robustness Across Conditions Variable Better performance in well-lit conditions; challenges in low light or 
adverse weather. 

Data Efficiency Good Indicates more data or variation might not significantly improve results 
without optimization. 

Hyperparameter Sensitivity Sensitive Requires careful tuning for optimal performance across datasets and 
scenarios. 

 

 
Figure 6.  scores for the performance metrics 

 

Conclusion  
The research addresses the challenges faced by traditional traffic surveillance systems through 

the implementation of the YOLOv5 model, which incorporates advanced architectural 

improvements and data augmentation strategies. The model features a new backbone and 

integrated components that significantly enhance its detection and tracking capabilities. Data 

augmentation plays a key role in preparing the model for real-world complexities, thereby 

increasing its robustness and data efficiency. The study demonstrates a significant 

improvement in vehicle detection and tracking accuracy, achieving high scores in precision, 

recall, and overall accuracy metrics. Despite the challenges of environmental variability and 

occlusion, the research suggests that with careful model tuning and optimization, YOLOv5 can 

substantially advance traffic management technologies. This study contributes to the field by 

showcasing how a blend of innovative model architecture and strategic data handling can 

enhance the effectiveness of traffic surveillance systems. 
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The performance of the YOLOv5 model, as reported, shows considerable sensitivity to 

hyperparameter settings. This implies that finding the optimal configuration requires extensive 

experimentation and tuning, which can be resource-intensive and may not be practical for real-

time applications or deployments in varied traffic settings without significant preliminary 

testing. The model demonstrates improvements in managing occlusions and changes in lighting, 

but these conditions still pose significant challenges. The effectiveness of the system under 

conditions of severe occlusion (where most of a vehicle is obscured) or extreme weather 

conditions (such as heavy rain or fog) was not conclusively addressed, which may limit the 

model's applicability in all traffic scenarios. 
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